Information Geometry and quantum mechanics

Mathieu Molitor

The space \mathcal{P}_n^\times of non vanishing probabilities $p : E_n \to \mathbb{R}$ defined on a finite set $E_n := \{x_1, \ldots, x_n\}$, i.e.,

$$\mathcal{P}_n^\times := \left\{ p : E_n \to \mathbb{R} \mid p > 0 \text{ and } \sum_{k=1}^{n} p(x_k) = 1 \right\},$$

is a very well known statistical manifold; it is endowed with the so-called Fisher metric g_F and exponential connection $\nabla^{(e)}$, and together, $(\mathcal{P}_n^\times, g_F, \nabla^{(e)})$ form a example of dually flat structure.

In this talk, we will use the dually flat structure of \mathcal{P}_n^\times to construct a Kähler structure on $T\mathcal{P}_n^\times$ via Dombrowski’s construction, and we will explain how a significant part of the quantum mechanical formalism (for the finite dimensional Hilbert space $\mathcal{H} = \mathbb{C}^n$) can be described using the Kähler geometry of $T\mathcal{P}_n^\times$.

If time allows, we should also consider an infinite dimensional example.