
Projects for NCTS Workshop on
DifferentialEquations, Surface Theory,

and Mathematical Visualization

February–March, 2003



Differential Geometry Computer Projects for NCTS Workshop
Part I. C. L. Terng

(1) Plane curve project

(i) Write a computer program to compute curvature of any parametrized
user defined immersed plane curve, then draw osculating circles,
parallel curves, focal points, involutes, and evolutes.

(ii) Use ODE solver to program the Fundamental Theorem of plane
curves from a user given curvature function, then draw osculating
circles, parallel curves, focal points, involutes, and evolutes.

(2) Space curve project

(i) Write a program to compute curvature and torsion of any immersed
space curve.

(ii) Use ODE solver to program the Fundamental Theorem of curves in
R3 from any user defined curvature and torsion functions, and two
principal curvatures, then draw Frenet frame and parallel frame.

(3) Non-linear Schrödinger equation (NLS) and smoke ring equa-
tion project

The smoke ring equation is the curve evolution γt = γx × γxx. It
is arc length preserving flow. Geometrically, it means the space
curve is moving in the direction of its binormal with the curvature
as its speed. The two principal curvatures evolves according to
NLS, which is a soliton equation. Hence we can use soliton theory
to study this curve flow.

(i) Program the Sattinger-Lee pseudo-spectral method to solve Cauchy
problem with user defined periodic initial data of NLS.

(ii) Use the inverse of Hashimoto transform to compute the cuver evo-
lution numerically and then draw the smoke ring curve evolution.



(4) Write a program to draw all surfaces of revolutions in R3 that
are Weingarten surfaces. Here a surface in R3 is called Weingarten
if the mean curvature H and the Gaussian curvature K satisfy a
linear relation, aH+bK = c for some constants a, b, c. In particular,
the case when H = constant and K is constant.

(5) Program the Fundamental Theorem of surfaces in R3. This
means:

(i) Compute the first, second fundamental forms, the principal curva-
tures, mean curvature, and the Gaussian curvature of a user defined
parametrized immersed surface in R3.

(ii) Determine whether the user defined first and second fundamental
forms satisfy the Gauss-Codazzi equations.

(iii) Integrate the Gauss-Codazzi equation numerically (obtained from
(ii)) to get the surface and draw it.

(6) Sine-Gordon equation (SGE) and K = −1 surfaces

The Gauss-Codazzi equation of surfaces in R3 with K = −1 is the
SGE, which is a soliton equation. Hence we can use soliton theory
to construct surfaces with K = −1 in R3.

(i) Draw the K = −1 surfaces corresponding to n-soliton solution of
SGE.

(ii) Solve the Bäcklund transformation of surface of revolution with
K = −1 (but not the pseudosphere) repeatedly to get new surfaces
of K = −1 and draw these surfaces.



(7) Isothermic surfaces in R3 and soliton equation

The Gauss-Codazzi equation for isothermic surfaces in R3 is a first
order PDE system of three functions, which is the reduced 3-wave
equation associated to O(4, 1). It is again a soliton equation. Hence
we can use soliton theory to study these surfaces.

(i) Construct all surfaces of revolutions that are isothermic.

(ii) Construct isothermic surfaces corresponding to n-solitons (n=1,2,3)

(iii) Construct Ribaucour transformations from isothermic surfaces of
revolution, and draw the new isothermic surfaces.



Differential Equations Computer Projects for NCTS Workshop
Part I. R.S. Palais

In all of the projects below you may use your favorite programming
system (i.e., Maple, Mathematica, Matlab, or a compiled language
like Java or C).

(1) Numerical solution of the Initial Value Problem.

Write a program to solve the initial value problem for a first order
system of ODE in two variables. The user should be able to enter
the ODE (as in the User Defined examples in 3D-XplorMath) and
also choose initial conditions an integration method, and step-size.
Your program should at least implement the Euler and Runge-
Kutta methods (and perhaps an adaptive Runge-Kutta).

Of course, if your programming system has built in ODE solvers
you should not use them but rather program the methods directly
from the algorithms.

(2) Visualization of solutions of the Initial Value Problem.

Write a program to display the solution of the initial value problem
for a first order system of ODE in two variables. The user should
again be able to enter the ODE and also choose initial conditions.
Use the Runge-Kutta method to integrate the equation, and in
this case you may use a built-in solver if one is available in your
programming system, but of course do not use a built-in call to a
method for ODE display.

The user should have the option of showing the vector field along
with the solution. Initially you should do this for time-independent
vector fields, and when you get that working see if you can solve the
(much harder) problem of displaying time-dependent vector fields.



(3) Visualizing multiple nearby solutions of the same IVP.

Write a program to display several neighboring solutions of the
same initial value problem for first order systems of ODE in two
and three variables. The user should be able to enter:

1) the ODE,

2) a central initial condition p,

3) a size S for a cubical box surrounding the central initial condition,

4) A small integer N giving the number of simultaneous solutions.

5) A step-size δ.

The program should first choose at random N initial conditions in
the box of edge-length S centered at p. It should then solve the N
IVPs step by step and at each step display the current solutions as
different colored dots (after erasing the previous dots).

(The effect will be a small cloud of colored dots. What will be
of interest, particularly for the case of “chaotic” ODE is to see
how quickly the initially nearby dots spread out in time—showing
visually how sensitively the solutions of the IVP depend on the
initial condition.)


