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Part I

The General Theory of
Initial Value Problems
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Predicting the Future

What we are going to study in this course can be
looked at as a generalization of the following interest-
ing and important question:

Suppose that we know the wind velocity at every
point of space and at each moment of time.

Suppose also that at a particular moment t0 we see a
tiny puff of smoke pass by, with its center located at
a point x0.

Can we then predict the position x(t) of the smoke at
times t close to t0?
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Mathematical Model Building

Translating this kind of vague question concerning the
real world into a precisely stated question about rigor-
ously defined mathematical objects is called building
a mathematical model, or simply “model building”.

We will see that in the present case it leads us to what
is called an initial value problem (IVP) for a time-
dependent ordinary differential equation (ODE).

Let’s see how this works.
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Space and Time

In our model, we will represent “time” by R.

It is natural to represent “space” by R3, but noth-
ing essential changes if we generalize to the case that
space is Rk, for some positive integer k, or even by
an arbitrary finite dimensional real vector space V .

Moreover—as we shall soon see—this extra general-
ity proves very useful, so in what follows we iden-
tify space with a finite dimensional orthogonal vector
space V , that you may think of R3 if that helps your
intuition.

Later, we will also consider cases where V is an in-
finite dimensional vector space and we will see that
this will lead us to consider initial value problems for
partial differential equations (PDE).)
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Wind is a Time-Dependent Vector Field

Now the wind velocity at a point x of V at time t is
a vector in V that we will denote by f(x, t).

A function f : V ×R → V is called a time-dependent
vector field on V , so saying that we know the wind
velocity at all points of space and all instants of time
just amounts to saying that we are given such a func-
tion f .

(We will always assume that f is at least continuous,
but to prove theorems we will actually assume more
than that.)
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The Path x(t) of the “Puff of Smoke”

We select a smoke particle that at time t0 (which we
will call the initial time) is located at the center of
the puff of smoke, and we identify the position x(t)
of this particle at time t with the position of the puff
at time t.

We will assume that the position x(t) is defined for
all times t sufficiently close to t0, so we can think of
t 7→ x(t) as a function defined in some open interval
I ⊆ R containing t0 and having values in V .

Note that by definition, x(t0) = x0, and we will call
x0 the initial position.
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Going With the Flow—the ODE

The characteristic property of a smoke particle is that
it “goes with the flow”, i.e., its velocity at any time t
is the same as the wind velocity at its position, x(t),
at time t.

Now the velocity of the smoke particle (at time t) is
just the tangent vector to its path x(t) at this time—
namely x′(t).

This means that the path x(t) satisfies the relation
x′(t) = f(x(t), t) !

Such a relation is called a time-dependent ordinary
differential equation.
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Initial Value Problems

Definition. Let V be a finite dimensional real vector
space and let f : V × R → V be a time-dependent
vector field on V . Given an initial time t0 ∈ R and
an initial position x0 in V , we associate a so-called
Initial Value Problem (IVP)
dx
dt = f(x, t) (The ODE)

x(t0) = x0 (The Initial Condition)

and we define a solution to this IVP to be any dif-
ferentiable path x : I → V defined in some inter-
val I containing t0 and satisfying x(t0) = x0 and
x′(t) = f(x(t), t) for all t ∈ I.
Our original problem can be paraphrased in terms of
this model as: Can we always solve such an IVP?
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Questions Concerning the IVP

Here are a few of the interesting questions associated
to the IVP that we will consider.

• Given an interval I containing t0, when can we be
sure there exists a solution of the IVP defined in I?

• If a solution does exist in I, is it necessarily unique?

•What can we say about the dependence of a solution
on the initial time and initial position.

• Assuming that a solution does exist, can we find
efficient algorithms for actually computing it numer-
ically with any desired accuracy?

• What are good methods for visualizing solutions in
low dimensions.
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A Reformulation of the IVP

Let J be a closed and bounded interval of real num-
bers containing t0 and let C(J, V ) denote the space
of all continuous maps of J into V .

We associate to a time-dependent vector field f on
V and x0 ∈ V a mapping F of C(J, V ) to itself as
follows: if x : J → V is continuous, F (x) : J → V is
defined by:

F (x)(t) := x0 +
∫ t

t0
f(x(s), s) ds.

Proposition. A mapping x : J → V solves the IVP
dx
dt = f(x, t), x(t0) = x0 if and only if x is a fixed point

of F , i.e., if and only if x(t) = x0 +
∫ t

t0
f(x(s), s) ds.

Proof. Trivial.
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Successive Approximations

Suppose that X is a metric space and F is a con-
tinuous map of X to itself. The “Method of Succes-
sive Approximations” is a technique for locating fixed
points of F . It works as follows. Define Fn : X → X
by composing F with itself n times. If x is any ele-
ment of X we call the sequence {Fn(x)} the sequence
of successive approximations defined by x.

Proposition. If a sequence of successive approxima-
tions {Fn(x)} converges to a limit p, then p is a fixed
point of F .

Proof. Since F is continuous, F (p) = F (limFn(x)) =
limFn+1(x) = p.

12



Solving IVPs by Successive Approximations

As above, let f : V × R → V be a time-dependent
vector field, J a closed, bounded interval, and define
F : C(J, V ) → C(J, V ) by:

F (x)(t) := x0 +
∫ t

t0
f(x(s), s) ds.

Let’s try to use Sucessive Approximations to solve
IVPs for a couple of special classes of vector fields, f .
Perhaps the simplest kind of time-dependent vector
fields is one that is constant in space, i.e., of the form
f(x, t) = φ(t), In this case the mapping F is clearly
the constant map with value Φ ∈ C(J, V ) defined by
Φ(t) = x0 +

∫ t

t0
φ(s) ds, i.e., the antiderivative of φ.

This is clearly a fixed point of F and also the solution
of the IVP, and we see that Successive approximations
works in this case.
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Linear ODE

Let us denote by L(V ) the vector space of linear
maps of V to itself. Any T ∈ L(V ), defines a time-
independent vector field: f(x, t) = Tx.

Recall how the exponential of T is defined using a
power series, namely

∑∞
k=0

1
k!T

k. The series is clearly
absolutely convergent and so defines an element exp(T )
in L(V ).

By absolute convergence, we can differentiate the series
for exp(tT ) termwise, and we see that d

dt exp(tT ) =
T exp(tT ).

It follows that the solution of the IVP for the vector
field f with initial data t0, x0 is exp((t− t0)T )x0.
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Linear ODE by Successive Approximation

Let’s try to solve the linear ODE dx
dt = Tx with the

initial condition x(t0) = x0 by successive approxima-
tion, choosing as the initial approximation the costant
curve x1(t) = x0 for all t in J .
The next approximation is:
x2(t) := x0 +

∫ t

t0
T (x1(s)) ds = (I + (t− t0)T )(x0),

and an easy induction shows that the n+1-st succes-
sive approximation is:
xn+1(t) := x0+

∫ t

t0
T (xn(s)) ds = (

∑n
k=0

(t−t0)
k

k! T k)(x0).
Since this converges to exp((t − t0)T )(x0), the solu-
tion of the IVP, we see that the method of successive
approximations solves the IVP for the case of linear
ODE also.
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Locally Lipschitz Vector Fields

There is a simple answer to the existence question for
an IVP. It turns out that just as long as the time-
dependent vector field f is continuous, a solution will
always exist on some interval containing t0.

However to get a satisfactory theory for the IVP, a
somewhat more stringent condition than just conti-
nuity is required.

Definition. A time-dependent vector field on V ,
f : V × R → V is called locally Lipschitz if for
each (x0, t0) ∈ V ×R there exists a K > 0 such that
‖f(x1, t)− f(x2, t)‖ < K ‖x1 − x2‖ for all x1 and x2

sufficiently close to x0 and all t sufficiently close to t0.
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Existence and Uniqueness Theorem
for Locally Lipschitz Vector Fields

Theorem. Let V be a finite dimensional orthogo-
nal vector space and let f : V × R → V be a time-
dependent locally Lipschitz vector field in V . Given
any T ∈ R and P ∈ V there exist positive real num-
bers δ and ε such that if |T−t0| < δ and ‖P − x0‖ < δ
then the IVP:
dx
dt = f(x, t)
x(t0) = x0

has a unique solution xx0,t0(t) on the interval
I = (t0 − ε, t0 + ε). Moreover, this solution is con-
tiuously diferrerentiable in t and is Lipschitz in the
initial data x0 and t0.

We will sketch the proof below after a few remarks.
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C1 Implies Locally Lipschitz

Let V and W be orthogonal vector spaces, U a convex
open set in V , f : U → W a C1 map, and Dfp, the
differential of f at p ∈ U .

If p, q ∈ U and σ(t) = p + t(q − p) is the line joining
them, the so-called “finite difference formula” says:
f(q)−f(p) =

∫ 1

0
Dfσ(t)(q−p) dt, and it follows that:

‖f(q)− f(p)‖ ≤ (
∫ 1

0

∥∥Dfσ(t)

∥∥ dt) ‖(q − p)‖,

Consequently, the supremum of ‖Dfp‖ for p in U is a
Lipschitz constant for f . (In fact, the smallest one.)

In particular it follows that a C1 time-dependent vec-
tor field is locally Lipschitz and so satisfies the Local
Existence and Uniqueness Theorem.
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A Counter-Example

Exercise. Show that continuity of V is not sufficient
to guarantee uniqueness for an IVP.

Hint: the classic example (with n = 1) is the initial
value problem dx

dt =
√
x, and x(0) = 0.

Show that for each T > 0, we get a distinct solution
x

T
(t) of this IVP by defining x

T
(t) = 0 for t < T and

x
T
(t) = 1

4 (t− T )2 for t ≥ T .
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Contracting Maps

A mapping F of a metric space X to itself is called
a contracting map (or a contraction) if it satisfies a
Lipschitz condition with constant K < 1.

Fundamental Contraction Inequality.
If F : X → X is a contraction, and if K < 1 is a
Lipschitz constant for F , then for all x1 and x2 in X,

ρ(x1, x2) ≤
1

1−K

(
ρ(x1, F (x1)) + ρ(x2, F (x2))

)
.

Proof. Exercise.

Corollary. A contraction mapping can have at most
one fixed point.

Proof. Assuming that x1 and x2 are fixed points we
deduce immediately that ρ(x1.x2) must be zero.
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The Banach Contraction Principle

Let F : X → X and Fn its n-fold composition with
itself. If F satisfies a Lipschitz condition with con-
stant K, by an easy induction Fn satisfies a Lipschitz
condition with constant Kn, so by the Fundamental
Contraction Mapping Inequality, if K < 1 then

ρ(Fn(x), Fm(x)) ≤ Kn +Km

1−K

(
ρ(x, F (x))

)
.

In particular the successive approximation sequence
{Fn(x)} is a Cauchy sequence. Hence:

Banach Contraction Principle. If X is a com-
plete metric space and if F : X → X is a contraction
mapping, then F has a unique fixed point p in X and
for any x ∈ X the successive approximation sequence
{Fn(x)} converges to p.
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A Stopping Rule

When do we stop iterating and accept the current ap-
proximation? Suppose an “error” of ε is acceptable,
and we start our iteration at x ∈ X. The Fundamen-
tal Inequality, with x1 = fN (x) and x2 = p gives:

ρ(fN (x), p) ≤ 1
1−K ρ(f

N (x), fN (f(x)))

≤ KN

1−K ρ(x, f(x)).

To insure ρ(fN (x), p) ≤ ε, we must choose N so large
that KN

1−K ρ(x, f(x)) < ε. We can compute ρ(x, f(x))
after the first iteration and then find N by solving the
above inequality for N :

Stopping Rule. If N > log(ε)+log(1−K)−log(ρ(x,f(x)))
log(K)

then ρ(fN (x), p) < ε.
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Speed of Convergence

Suppose we take ε = 10−m in our stopping rule in-
equality. What we see is that the growth of N with
m is a constant plus m/| log(K)|, or in other words,
to get one more decimal digit of precision we have
to do (roughly) 1/| log(K)| more iteration steps. So
if we need N iterative steps to get m decimal digits
of precision, then we need another N to double the
precision to 2m digits.
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Existence and Uniqueness Proof

The Existence and Uniqueness Theorem will follow
from the Banach Contraction Principle if we can show
that for ‖v0‖ < ε, F : C(J, V ) → C(J, V ) mapsX into
itself and has K as a Lipschitz bound.

If σ ∈ X then
‖F (σ)(t)− p‖ ≤ ‖v0 − p‖+

∫ t

0
‖f(σ(s), s)‖ ds

≤ ε+ δB ≤ 2ε,
so F maps X to itself.
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Existence and Uniqueness Proof (Cont.)

And if σ, τ ∈ X then

‖f(σ(t), t)− f(τ(t), t)‖ ≤M ‖σ(t)− τ(t)‖, so

‖F (σ)(t)− F (τ)(t)‖ ≤
∫ t

0

‖f(σ(s), s)−f(τ(s), s)‖ ds

≤
∫ t

0

M ‖σ(s)− τ(s)‖ ds

≤
∫ t

0

Mρ(σ, τ) ds

≤ δMρ(σ, τ) ≤ Kρ(σ, τ),

and it follows that ρ(F (σ), F (τ) ≤ Kρ(σ, τ).
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Maximal Solutions of the IVP

The Existence and Uniqueness Theorem is a central
result in the theory of ODE with a great many impor-
tant consequences. We next consider one easy corol-
lary. A solution σ : J → V of the IVP is called the
maximal solution for given initial data t0 and x0 if
any other solution x : I → V with the same initial
data, is a restriction of σ to a subinterval I of J .

Proposition. If f : V ×R → V is a locally Lipschitz
time-dependent vector field, then for any initial data
t0 and x0, the maximal solution of the IVP exists.

Proof. Exercise. Hint:If x1 : I1 → V and x2 : I2 → V
are solutions of the IVP with the same initial data,
show that the set of t ∈ R with x1(t) = x2(t) is a
non-empty open and closed subset of I1 ∩ I2.

26



Maximal Solutions (Cont.)

Exercise. Show that if σ : (a, b) → V is a maximal
solution of an IVP, then either b = ∞ or ‖σ(t)‖ → ∞
as t → b. Similarly, either a = −∞ or ‖σ(t)‖ → ∞
as t → a. Hint: If b < ∞ and ‖σ(t)‖ 6→ ∞ as t → b,
there is a sequence {tn} converging to b with{σ(tn)}
converging to p ∈ V . Use the Existence and Unique-
ness Theorem with t0 = b and x0 = p to show that
the solution σ could be extended to (a, b + ε) with
ε > 0, contradicting maximality of σ.

Exercise. Suppose the vector field f is bounded, or
more generally satisfies

∫∞
1

dr
B(r) = ∞ where B(r) =

sup‖x‖<r ‖f(x, t)‖. Show that each maximal solution
is defined on all of R. Hint: How long does it take a
solution to get outside a ball of radius R?
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Global Existence vs. Finite Time Blowup

If for a particular initial condition the maximal solu-
tion is defined on the entire real line then we say we
have global existence for that initial condition, other-
wise we say that there is finite-time blowup.

Exercise. On R, consider the time-independent ODE
dx
dt = x2 with the initial condition x(0) = x0. Show
that in this case the maximal solution is x(t) = x0

1−x0t

with the interval of definition is (−∞, 1
x0

) if x0 > 0
and ( 1

x 0
,∞) if x0 < 0—in other words we have finite-

time blowup at time T = 1
x0

.
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Autonomous vs. Non-Autonomous ODE

A time-independent vector field f on V is also called
autonomous. An obvious and characteristic prop-
erty of autonomous ODEs dx

dt = f(x) is that if x(t)
is a solution defined on (a, b) then x(t + c) is a so-
lution defined on (a − c, b − c). In particular, if the
maximal solution for the initial condition x(0) = p
is σp : (a, b) → V then the maximal solution for the
initial condition x(t0) = p is just σp(t − t0), defined
on (a+ t0, b+ t0).

Exercise. We call f complete if σp has domain
R for all p ∈ V . In this case we define the map
φt : V → V for each t ∈ R by φt(p) = σp(t). Show
that t 7→ φt is a homomorphism of R into the group
of diffeomorphisms of V (i.e., φt1+t2 = φt1 ◦ φt2).
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Reduction Theorems

We remarked earlier that even if one is interested only
in solving the IVP for time-dependent vector fields
in R3, there are still good reasons to consider the
problem in more general vector spaces.

We illustrate this by showing how to:

1) reduce an IVP for a non-autonomous vector field
in V to an IVP for a time-independent vector field in
V ×R, and

2) reduce an IVP for higher order ODE in V to an
IVP for a vector field in a product of copies of V .

The proofs will be left as exercises.
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Time-Dependent → Time-Independent

As we have seen, autonomous ODE have a number
of simplifying features, and this makes the following
reduction quite useful.

Exercise. Let f : V ×R → V be a time-dependent
vector field in V , and define an associated time inde-
pendent vector field f̃ in V×R by f̃(x, z) = (f(x, z), 1).
Show that y(t) = (x(t), z(t)) is a solution of the dif-
ferential equation dy

dt = f̃(y) if and only if z(t) = t+ c

and x(t) is a solution of dx
dt = f(x, t + c). Deduce

that if y(t) = (x(t), z(t)) solves the IVP dy
dt = f̃(y),

y(t0) = (x0, t0), then x(t) is a solution of the IVP
dx
dt = f(x, t), x(t0) = x0.
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Second Order → First Order

A curve x(t) in V is a solution of the second ODE
d2x
dt2 = f(x, dx

dt , t) in V if x′′(t) = f(x(t), x′(t), t). (Here
of course f is a map V × V ×R → V .)

Define an associated time-dependent vector field f̃ on
V ×V by f̃(x, v, t) = (v, f(x, v, t))—so the associated
first order ODE in V × V is dx

dt = v, dv
dt = f(x, v, t).

Exercise. Define the IVP for for the above sec-
ond order ODE, and analyze the relation of this IVP
and the IVP for the time-dependent vector field f̃ on
V × V . Use this to formulate and prove an Existence
and Uniqueness Theorem for second order ODE. Now,
generalize this to m-th order ODE in V
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Gronwall’s Inequality.

The following estimate plays a very important role in
ODE theory.

Gronwall’s Inequality. Let u : [0, T ) → [0,∞) be
a continuous, non-negative, real-valued function and
assume that u(t) ≤ U(t) := C +K

∫ t

0
u(s) ds for cer-

tain constants C ≥ 0 and K > 0. Then u(t) ≤ CeKt.

Exercise. Prove Gronwall’s Inequality. Hint: Since
u ≤ U , it is enough to show that U(t) ≤ CeKt, or
equivalently that e−KtU(t) ≤ C, and since U(0) = C,
it will suffice to show that e−KtU(t) is non-increasing,
i.e., that (e−KtU(t))′ ≤ 0. But, since (e−KtU(t))′ =
e−Kt(U ′(t) −KU) and U ′ = Ku, this just says that
Ke−Kt(u− U) ≤ 0.
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Continuity w.r.t Initial Conditions.

Theorem. If f is a C1 vector field on V and σp(t)
the maximal solution curve of dx

dt = f(x) with initial
condition p, then as q tends to p, σq(t) approaches
σp(t), uniformly for t in a bounded interval I.

Proof. Since σp(t) = p+
∫ t

0
f(σp(s), s) ds,

‖σp(t)− σq(t)‖ ≤
‖p− q‖+

∫ t

0
‖f(σp(s), s)− f(σq(s), s)‖ ds.

But on any bounded set (so on some neighborhood of
σp(I)× I), f satisfies a Lipschitz condition:
‖f(x, t)− f(y, t)‖ ≤ K ‖x− y‖, so ‖σp(t)− σq(t)‖ ≤
‖p− q‖+K

∫ t

t0
‖σp(s)− σq(s)‖ ds, and by Gronwall’s

Inequality, ‖σp(t)− σq(t)‖ ≤ ‖p− q‖ eKt.

We prove in Appendix A that if f is Cr then (p, t) 7→
σp(t) is a Cr map.
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The IVP for Inhomogeneous Linear ODE

For a linear ODE dx
dt = Ax with initial condition

x(t0) = x0 we saw that the solution is exp((t−t0)A)x0.
If g : R → V is a smooth function, then we can add it
to the right hand side of the ODE, getting a so-called
inhomogeneous linear ODE, and it turns out that the
IVP for such equations can be solved in a fairly ex-
plicit form by a formula that for historical reasons is
called “The Variation of Parameters Formula”.

Exercise. Show (by direct verification) that the so-
lution of the IVP for the inhomogeneous linear differ-
ential equation dx

dt = Ax+ g(t) with initial condition
x(0) = x0 is given by:

x(t) = exp(tA)x0 +
∫ t

0

exp((t− s)A)g(s) ds.
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Existence of a Periodic Orbit

Exercise. Assume that the linear operator A is what
is called “asymptotically stable”—namely that all of
its eigenvalues have negative real part—and also that
the forcing term g(t) is periodic with period T > 0.
Show that there is a point p ∈ V for which the solu-
tion x(t) with initial value x(0) = p is periodic with
period T .

Hint: Since x is given by the above variation of pa-
rameters formula, the condition that it be periodic of
period T is that p = eTAp+

∫ T

0
e(T−s)Ag(s) ds, or that

p = (I − eTA)−1
∫ T

0
e(T−s)Ag(s) ds. Why is the oper-

ator (I − etA) invertible?
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Part II

Numerical Solutions of
Initial Value Problems
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Numerical Algorithms for Solving IVPs

Very few initial value problems admit explicit closed
form solutions, so in general we must construct so-
lutions numerically with the aid of a computer. But
what algorithm should we use?

The natural first guess is successive approximations.
But while that is a powerful theoretical tool for study-
ing general properties of solutions (in particular, ex-
istence and uniqueness), it is not an efficient method
for constructing numerical solutions.

In fact there is no one simple answer to this question,
for there is no one algorithm that is “best” in all sit-
uations. Below we will look at just two methods from
the numerical analyst’s extensive toolbox for solving
initial value problems, Euler and Runge-Kutta.
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The General Approach

In what follows we will suppose that f is a C1 time-
dependent vector field on Rn, and given t0 in R and
x0 in Rn we will denote by x(t) or σ(f, x0, t0, t) the
maximal solution of the IVP dx

dt = f(x, t) with initial
condition x(t0) = x0.

The goal in the numerical integration of ODE is to de-
vise efficient methods for approximating the solution
x(t) on an interval I = [t0, T ].

The basic strategy is to interpolate N equally spaced
gridpoints t1, . . . tN in the interval I (defined by tk :=
t0 + k∆t with ∆t = T−t0

N ), and use some algorithm
to define values x1, . . . , xN in Rn, in such a way that
when N is large each xk is close to the corresponding
x(tk).
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The General Approach (Cont.)

The quantity max1≤k≤N ‖xk − x(tk)‖ is called the
global error of the algorithm, and if it converges to
zero as N tends to infinity (for every choice of f , t0,
x0, and T ), then we say that we have a convergent
algorithm.

Even if a algorithm is convergent, that does not nec-
essarily mean that it will provide an adequate method
for solving initial value problems in all situations;
other considerations such as stability and rate of con-
vergence are important. However, if an algorithm is
not at least convergent, that is sufficient reason to
reject it as a tool for solving IVPs numerically.
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Stepping Methods

A common way to construct the algorithm that pro-
duces the values x1, . . . , xN uses a recursion based on
a so-called stepping procedure, namely a function,
Σ(f, x0, t0,∆t), having as inputs:

1) a time-dependent vector field f on Rn,
2) an initial condition x0 in Rn,
3) an initial time t0 in R, and
4) a “time-step” ∆t in R,
and with output a point of Rn that approximates
σ(f, x0, t0, t0 + ∆t) well when ∆t is small.

More precisely, the so-called local truncation error,
defined by ‖σ(f, x0, t0, t0 + ∆t)− Σ(f, x0, t0,∆t)‖,
should approach zero at least quadratically in the
time-step ∆t.
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Stepping Methods (Cont.)

Given such a stepping procedure, the approximations
xk of the x(tk) are defined recursively by xk+1 :=
Σ(f, xk, tk,∆t). Numerical integration methods that
follow this general pattern are referred to as finite
difference methods.

There are two main sources contributing to the global
error, ‖xk − x(tk)‖. At each step there will be an
additional local truncation error, and after the first
step, there will be an error because the recursion
uses Σ(f, xk, tk,∆t) rather than Σ(f, x(tk), tk,∆t). In
practice there is a third source of error, namely round-
off error from using floating-point arithmetic, We will
ignore this, pretending that our computers do precise
real arithmetic, but there are situations where it is
important to take round-off error into consideration.
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Euler’s Method

Euler’s Method is defined by the particularly simple
and natural stepping procedure: :
Euler Step: ΣE(f, x0, t0,∆t) := x0 + ∆t f(x0, t0).
It is not hard to see why this is a good choice. If
as above we denote σ(f, x0, t0, t) by x(t), then by
Taylor’s Theorem:

x(t0 + ∆t) =x(t0) + ∆t x′(t0) +O(∆t2)

=x0 + ∆t f(x0, t0) +O(∆t2)

=ΣE(f, x0, t0,∆t) +O(∆t2),

so that ‖σ(f, x0, t0, t0 + ∆t)− Σ(f, x0, t0,∆t)‖, the lo-
cal truncation error for Euler’s Method, does go to
zero quadratically in ∆t.
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Euler’s Method (Cont.)

When we partition [0, T ] into N equal parts, ∆t =
T−t0

N , each step in the recursion for computing xk will
contribute a local truncation error that is O(∆t2) =
O( 1

N2 ), and since there are N steps in the recursion,
this suggests that the global error will be O( 1

N ), and
hence will go to zero as N tends to infinity. Thus we
expect Euler’s Method to be a convergent algorithm.
We will give a rigorous argument below.

Exercise. Show that Euler’s Method applied to the
initial value problem dx

dt = x with x(0) = 1 gives
limN→∞(1 + t

N )N = et.

44



Error Estimate for Euler Method

Assume the vector field f satisfies the local Lipschitz
bound ‖f(p, t)− f(q, t)‖ ≤ L ‖p− q‖. We use an ar-
gument of Hermann Karcher to estimate the error in
Euler’s method.

Recall that Euler’s Method approximates x(t) at points
tn := tn−1 +∆T = t0 +n∆T , where ∆T = T−t0

N , and
the approximations e(tn) are defined inductively by
e(t0) := x0, and e(tn+1) := e(tn) + ∆T f(e(tn), tn).

We interpolate the discrete approximations e(tn) with
a piecewise-linear curve e(t) defined on [tn, tn+1] by
e(t) := e(tn) + (t − tn) f(e(tn), tn). Think of this as
considering the time difference ∆t := t− tn as a vari-
able, allowing us to estimate the difference or “error”,
Err(t) := ‖x(t)− e(t)‖ by a Gronwall-like argument.
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Error Estimate for Euler Method (Cont.)

We first estimate the error for a single time-step, i.e.,
on the interval t0 ≤ t ≤ t0 + ∆T . From the def-
inition of e, ė(t) = f(x0, t0), t0 ≤ t ≤ t0 + ∆T ,
so ë = 0. It follows that ẋ(t) − ė(t) = f(x(t), t) −
f(x0, t0) = f(x(t), t)−f(e(t), t)+f(e(t), t)−f(x0, t0),
so
‖ẋ(t)− ė(t)‖ ≤ L ‖x(t)− e(t)‖+‖f(e(t), t)− f(x0, t0)‖.
The second term on the right is not yet in a form to
apply a Gronwall argument. However, if we define
K := maxt0≤t≤t0+∆t

∥∥ d
dt (f(e(t), t)− f(x0, t0)

∥∥
then we obtain the differential inequality

‖ẋ(t)− ė(t)‖ ≤ L ‖Err(t)‖+K(t− t0).
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Error Estimate for Euler Method (Cont.)

Since
Err(t) =

∥∥∥∫ t

t0
(ẋ(t)− ė(t)) dt

∥∥∥ ≤
∫ t

t0
‖ẋ(t)− ė(t)‖ dt,

we see that ‖Err(t)‖ ≤ ψ(t), where ψ is the differen-
tiable function:

ψ(t) := ‖Err(t0)‖+L
∫ t

t0

‖Err(t)‖ dt+K
∫ t

t0

(t−t0) dt.

Since ψ̇ = L ‖Err(t)‖ + K(t − t0) and ‖Err(t)‖ ≤ ψ,
we have the differential inequality ψ̇ ≤ Lψ+K(t−t0)
that we now use for a Gronwall argument.
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Error Estimate for Euler Method (Cont.)

Compute the derivative of the function(
ψ +

K

L2
+
K

L
(t− t0)

)
· e−L·(t−t0).

d

dt

((
ψ +

K

L2
+
K

L
(t− t0)

)
· e−L·(t−t0)

)
=(

ψ̇ +
K

L
− L

(
ψ +

K

L2
+
K

L
(t− t0)

))
· e−L·(t−t0).

By the differential inequality for ψ, this function has
a non-positive derivative, so all of its values are less
than its “initial” value at t0, namely Err(t0)+ K

L2 , and
solving for ψ we obtain the desired error estimate:

Err(t) ≤ ψ(t) ≤
(
Err(t0) +

K

2
(t− t0)2

)
eL·(t−t0)

for t0 ≤ t ≤ t0 + ∆T .
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Error Estimate for Euler Method (Cont.)

To iterate this estimate we define the starting point
for the second time step as x1 := e(t0 + ∆T ), so that
we have the initial error bound

|x(t0 + ∆t)− x1| ≤

Err(t1) :=
(
Err(t0) +

K

2
(t− t0)2

)
eL·∆T ,

and after the second time step we have

Err(t) ≤ ψ(t) ≤
(
Err(t1) +

K

2
(t− t1)2

)
eL·(t−t1)

for t1 ≤ t ≤ t1 + ∆T.
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Error Estimate for Euler Method (Cont.)

To reach the fixed time T one needs N time steps of
size ∆t := (T − t0)/N and the N -fold iteration of the
error estimate gives (replace N ·∆T by (T−t0), recall
Err(t0) = 0 and use the sum of the geometric series):

Err(t) ≤ Err(t0) · eL(T−t0) +
K

2
∆T 2 ·

N∑
k=1

ekL·∆T

≤ K

2
∆T 2 · (eL(T−t0+∆T ) − 1)/(eL∆t − 1)

≤ K

2L
∆T · (eL(T−t0+∆T ) − 1).

This proves in particular that when ∆T → 0 the it-
erated Euler curves converge uniformly to the exact
solution, or in other words that Euler’s Method is a
convergent algorithm.
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Runge-Kutta

Despite what we have just proved, perhaps the only
positive thing that can be said about the Euler method
for solving an IVP is that it is intuitive and easy to
program. Beyond that there is little to recommend it
as a practical method for solving real-world problems.
It requires very small time steps to get reasonable ac-
curacy, making it very slow, and in fact it is rarely
used except for pedagogical purposes.

A general purpose finite difference method for solving
IVPs that is the most useful (and the only other one
that we will consider) is Runge-Kutta, or more pre-
cisely the fourth order Runge-Kutta Method, as there
is a whole family of Runge-Kutta methods. It is in
fact one of the most implemented an useful pieces of
numerical software for any purpose.
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Runge-Kutta Step

The stepping procedure for fourth order Runge-Kutta
is a lot less transparent than that for Euler. It is given
by the following formula:

Runge-Kutta Step

ΣRK4
(f, x0, t0,∆t) := x0 + 1

6 (k1 + 2k2 + 2k3 + k4),
where:
k1 = ∆t f(x0, t0)
k2 = ∆t f(x0 + 1

2k1, t0 + ∆t
2 )

k3 = ∆t f(x0 + 1
2k2, t0 + ∆t

2 )
k4 = ∆t f(x0 + k3, t0 + ∆t)
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Runge-Kutta Pseudo Code

function RungeKutta4(f,x0,t0,h,N):vector;
f: function(v:vector;s:real):vector;
x0:vector ;t0,h:real; N:integer;
var j:integer; t:real; x,k1,k2,k3,k4:vector;
begin

t := t0; x := x0;
for j := 1 to N do

begin
k1 := h f(x,t);
k2 := h f(x+ k1/2,t+h/2);
k3 := h f(x+ k2/2,t+h/2);
k4 := h f(x+ k3,t+h);
x := x + (k1+2(k2+k3)+k4)/6;
t := t + h;

end;
RungeKutta4 := x;

end;
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Runge-Kutta (Cont.)

It is of course a fair question to ask where such a
strange formula comes from. If you are familiar with
Simpson’s Rule for evaluating the definite integral of
a function φ(t), then the above should not look un-
reasonable, and indeed if f(x, t) = φ(t) then recall
that the solution of the IVP reduces to the integral of
φ and in this case the Runge-Kutta formula reduces
precisely to Simpson’s Rule. And like Simpson’s Rule,
Runge-Kutta is fourth order, meaning that the local
truncation error goes to zero as the fifth power of the
step-size, and the global error as the fourth power. So
if for a fixed step-size we have attained an accuracy
of 0.1, then with one-tenth the step-size (and so ten
times the number of steps and ten times the time) we
can expect an accuracy of 0.00001, whereas with the
Euler method, ten times the time would only increase
accuracy from 0.1 to 0.01.
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Part III

Classical Mechanics
Lattice Models and
Wave Equations
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Newton’s Equations

The second order ODE that arise in practice frequently
have a special form that we will call Generalized
Newton’s Equations. We will define this class of
equations below

We start with an orthogonal vector space C that we
call configuration space and define TC to be C ×C,
and Π : TC → C to be the projection (x, ẋ) 7→ x. (If
you know about such things you can think of C as a
Riemannian manifold and TC as its tangent bundle.)

We next define four real-valued functions on TC, the
Kinetic energy K(x, ẋ) := 1

2 ‖ẋ‖
2, the potential en-

ergy U(x, ẋ) := U(x) where U(x) is a smooth function
on C (also called the potential energy), the Lagrangian
L := K − U , and the Hamiltonian (or total energy)
H := K + U .
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Newton’s Equations (Cont.)

If (x1, . . . , xn) are local coordinates in C, we define as-
sociated “canonical coordinates” (q1, . . . , qn, q̇1, . . . q̇n)
in TC by qi(x, ẋ) := xi(x), and q̇i(x, ẋ) := dxi(ẋ).

In other words, qi(x, ẋ) is the i-th coordinate of the
projection Π(x, ẋ), and q̇i(x, ẋ) is the i-th component
of the vector ẋ in the coordinate system.

Exercise. Show that expressed in canonical coordi-
nates, the Kinetic Energy has the form

K(q, q̇) =
∑

i,j
1
2gij(q)q̇iq̇j

where gij(q) is a positive definite symmetric matrix.
Hint: In orthonormal coordinates yi this is clear, with
gij = δij . If the transformation of coordinates is given
by yi = φi(x) then dyi =

∑
j

∂φi

∂xj
dxj , and show that

gij =
∑

k
∂φk

∂xi

∂φk

∂xj
.
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Newton’s Equations (Cont.)

If σ : [a, b] → C is a smooth curve on C, then we call
a curve σ̃ : [a, b] → TC a lifting of σ if Π ◦ σ̃ = σ.
This is just the same thing as a vector field defined
along σ. We define the canonical lifting of σ to be
σ̇(t) := (σ(t), σ′(t), where as usual σ′(t) is the tangent
to σ at t.

Exercise. Given canonical coordinates qi, q̇i as above,
and a curve σ̃ : [a, b] → TC, define qi(t) := qi(σ̃(t))
and q̇i(t) = q̇i(σ̃(t)). Show that a necessary and suf-
ficient condition for σ̃ to be the canonical lifting of
its projection is that the qi(t) and q̇i(t) satisfy the
system of first order ODE dqi(t)

dt = q̇i(t).

58



Newton’s Equations (Cont.)

Given canonical coordinates qi, q̇i as above, We define
functions pi on TC called the canonical momenta
associated to the these coordinates by pi := ∂L

∂q̇i
. Since

L(q, q̇) = K(q, q̇) − U(q) =
∑

i,j
1
2gij(q)q̇iq̇j − U(q),

pi =
∑

i gij(q)q̇j . Since the matrix gij(q) is positive
definite and so non-singular, and since the qi and q̇i
are local coordinates in TC, it follows that the qi and
pi are likewise local coordinates. We now define the
generalized Newton’s Equations to be the first order
system of equations:

dqi
dt

= q̇i

dpi

dt
=
∂L
∂qi
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Newton’s Equations (Cont.)

Exercise. Let Gij be the matrix-valued function on
TC which at each point is the matrix inverse to gij

at that point. Show that the Generalized Newton’s
Equations on TC are equivalent to the system of n
second order ODE on C :

d2xk

dt2
=

n∑
i=1

Gki

 ∂L
∂qi

−
n∑

j=1

(
∂2L
∂q̇i∂qj

)
dxj

dt

 .

The matrix elements Gki, and the partial derivatives
of L are all evaluated at (qi(t), q̇i(t)) =

(
x(t), dxi(t)

dt

)
so this latter equation has exactly the form of a sys-
tem of n second order ODE for the n functions xi(t).
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Newton’s Equations Example

Consider a particle of mass m moving in R3 under a
force that is given as usual by F = −∇U , and let the
xi be the usual Cartesian coordinates of the particle.
Then its kinetic energy is K(x, ẋ) = m

2 (q̇21 + q̇22 + q̇23),
its potential energy is U(x) = U(q1, q2, q3), pi = mq̇i,
and the generalized Newton’s Equations are the usual
Newton’s Equations dqi

dt = q̇i and mdq̇i

dt = − ∂U
∂qi

.

Exercise. Generalize the above to a sytem of n parti-
cles in R3 with masses m1, . . . ,mn interacting under
forces derived from a potential.
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Lagrange’s Equations

If we replace the momentum pi by its definition ∂L
∂q̇i

and note then Newton’s Equations dpi

dt = ∂L
∂qi

becomes
the so-called Lagrange (or Euler-Lagrange) equations:

∂L
∂qi

− d

dt

(
∂L
∂q̇i

)
= 0.

In this form these equations have a very remarkable
and important interpretation that we consider next.

If σ : [a, b] → C is a smooth path in C, we define its
action, A(σ), by A(σ) :=

∫ b

a
L(σ̇(t)) dt.
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Lagrange’s Equations (Cont.)

Now suppose xs : [a, b] → C is a variation of x—i.e.,
a smooth 1-parameter family of paths in C defined for
s near 0 and such that x0 = x—and define δx(t) :=
( ∂

∂s )s=0xs(t). By differentiating under the integral
sign, using ∂

∂t
∂
∂s = ∂

∂s
∂
∂t , and integrating by parts, it

is easy to see that:

dA(xs)
ds

∣∣∣∣∣
s=0

=
∑

i

∫ b

a

(
∂L
∂qi

− d

dt

(
∂L
∂q̇i

))
· δxi(t) dt

+
∑

i

∂L
∂q̇i

· δxi(t)

]b

a

.

Exercise. Fill in the details!
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Lagrange’s Equations (Cont.)

We will come back to the second term later when we
discuss Noether’s Theorem, but for now let us assume
that the variation xs(t) vanishes identically in s for
t = a and t = b, so that clearly δx(t) also vanishes
at the endpoints a and b and hence this second term
vanishes. We will call x an extremal of the action
functional if d

ds

∣∣
s=0

A(xs) = 0 for all variations xs

vanishing at the endpoints a and b, and it follows
easily from the above formula that a necessary and
sufficient condition for x to be an extremal of the
action is that it satisfy the Euler-Lagrange equations.
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Hamilton’s Equations

Since the qi together with their conjugate momenta
pi form a local coordinate system in TC, it is natural
to try to write the Generalized Newton’s Equations
as a system of first order ODE. When we do so there
is a major surprise—the resulting equations, have an
unexpectedly simple and symmetric form.

Since K is a homogeneous quadratic form, Euler’s
Theorem says that

∑
i piq̇i = 2K, and hence H =∑

i piq̇i −L. It follows that dH =
∑

i(q̇idpi + pidq̇i −
∂L
∂qi
dqi − ∂L

∂q̇i
dq̇i) = q̇idpi − ∂L

∂qi
dqi, or in other words,

∂H
∂qi

= −∂L
∂qi

and ∂H
∂pi

= q̇i. Thus Newton’s Equations
become dqi

dt = ∂H
∂pi

, dpi

dt = −∂H
∂qi

. These are called
Hamilton’s Equations.
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Poisson Brackets

If F and G are two smooth real-valued functions on
TC, we define a third such function {F,G} called their
Poisson Bracket, by {F,G} :=

∑
i

∂F
∂pi

∂G
∂qi

− ∂G
∂pi

∂F
∂qi

.

Remark. It can be shown that the function we get in
this way does not depend on the choice of canonical
coordinates used to define it.

Clearly, (F,G) 7→ {F,G} is bilnear and skew-symmetric,
and in particular {F, F} = 0.

Exercise. If F : TC → R is a smooth function, show
that its Poisson Bracket with the Hamiltonian H is
its time derivative along solution curves of Hamilton’s
Equations. That is, if σ(t) is any solution of Hamil-
ton’s Equations then d

dtF (σ(t)) = {H,F}(σ(t)).
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Constants of the Motion

A function F : TC → R is called a constant of the
motion if it is constant along every solution curve of
Hamilton’s Equations.

Exercise. Show that F is a constant of the motion
if and only if {H,F} = 0. Deduce that H is always a
constant of the motion. (This is the Conservation of
Energy Theorem.)

Exercise. A canonical coordinate qi is called ignor-
able if the Hamiltonian H is independent of qi. Prove
that if this is the case the the conjugate momentum
pi is a constant of the motion.

Exercise. Show that if F and G are constants of the
motion then so is {F,G}.
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Complete Integrability

Given real numbers a < b we will denote by H(a,b) the
set of points (x, v) in TC where a < H(x, v) < b. Since
H is a constant of the motion, each H(a,b) is invariant
under the flow given by Hamilton’s Equations.

Definition. Canonical coordinates (qi, pi) defined in
H(a,b) are called action-angle variable if all the qi
are ignorable, i.e., H = H(p1, . . . , pn). If action-angle
variables exist in H(a,b) we say that the correspond-
ing Hamiltonian system is completely integrable
in H(a,b)

Assume that this is the case, and choose E satis-
fying a < E < b, and a = (a1, . . . , an) such that
H(a1, . . . , an) = E, and define Σ(E, a) to be the
submanifold of TC where H = E and pi = ai for
i = 1, . . . , n.
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Complete Integrability (Cont.)

Since H and the pi are all constants of the motion,
each such Σ(E, a) will be an invariant submanifold of
the Hamiltonian flow. Let’s see what the flow looks
like on such a manifold when looked at using action-
angle variables.

If we define Ωi(a) := ∂H
∂pi

(a), then since Hamilton’s
Equations are dqi

dt = ∂H
∂pi

, dpi

dt = −∂H
∂qi

, on Σ(E, a)
Hamilton’s Equations become dqi

dt = Ωi(a), dpi

dt = 0,
so the solutions are just qi(t) = qi(t0) + Ωi(a)t. In
other words, expressed in the action-angle variables,
(qi, pi), the solution curves are just “straight line mo-
tion with constant velocity”.
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The Arnold-Liouville Theorem

Smooth functions on TC are said to be in involu-
tion if their Poisson brackets all vanish, Clearly, if
(qi, pi) are action-angle variables, then the pi are in
involution and are of course functionally independent
(i.e., their differentials dpi are everywhere linearly
independent). So if a Hamiltonian system is com-
pletely integrable in H(a,b) then there exist in H(a,b)

n := dim(C) functionally independent constants of
the motion F1, F2, . . . , Fn that are in involution. The
Arnold-Liouville Theorem is the converse statement:
given such F1, F2, . . . , Fn, one can use them to con-
struct (by quadratures) action-angle variables inH(a,b),
and so linearize the Hamiltonian flow defined by H.
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Ergodicity and the KAM Theorem.

At the other extreme from completely integrable sys-
tems is the class of Hamiltonian systems called er-
godic. There is a natural measure on TC, the so-
called Liouville measure, which with respect to any
set of canonical coordinates is just Lebesgue measure.
Moreover, the Liouville measure is preserved by the
flow defined by any Hamiltonian system in TC. IfH is
a Hamiltonian on TC, the Liouville measure induces
a measure on each of its level surfaces Σ, and this
induced Liouville measure is also preserved by the
Hamiltonian flow restricted to Σ. The Hamiltonian
flow is called ergodic if every invariant measureable
set of a level surface Σ either has measure zero or its
complement has measure zero.
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Ergodicity and KAM (Cont.).

It is easy to see that if the Hamiltonian flow generated
by H is ergodic then H is the “only” constant of the
motion—meaning that any constant of the motion is
a function of H. For a long time it was believed that
generic Hamiltonian systems would be ergodic, and
in fact there was a famous theorem of Oxtoby and
Ulam in the 1930s that could be read as supporting
that view. However, in the late 1950s, Kolmagorov,
Arnold, and Moser proved a truly remarkable result.
It follows in particular from the KAM theory that if
Hs is a smooth one parameter family of Hamiltonian
functions on TC such thatH0 is completely integrable,
then Hs is not ergodic for s sufficiently close to 0. (In
fact, KAM prove something much stronger and more
precise.)
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Example Integrable Systems

Completely integrable systems are the only ones that
one can expect to analyze in detail, but one can hope
their study will provide clues to the behavior of more
general Hamiltonian systems. Perhaps for this rea-
son the nineteenth and early twentieth centuries saw
a flourishing theory of complete integrable systems.
Below are a few important examples.

Example 1. One-dimensional Systems. The Arnold-
Liouville criterion for complete integrability is the ex-
istence of n = dim(C) functionally independent con-
stants of the motion. Since H is always a constant of
the motion, it follows that all one-dimensional Hamil-
tonian systems are completely integrable.

Exercise. Show directly how to solve the general
Newton’s Equation by quadrature in one dimension.
(Hint: Solve 1

2 (dx
dt )2 + U(x) = E for dx

dt .)
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Example Integrable Systems (Cont.)

Example 2. Uncoupled Products. Let C := C1 ⊕
· · · ⊕ Ck and identify TC with TC1 ⊕ · · · ⊕ TCk. If
Hi is a Hamiltonian on TCi, i = 1, . . . , k, define a
Hamiltonian H = H1 + · · ·+Hk on TC. The resulting
Hamiltonian system (TC,H) is called the uncoupled
product of the “component” systems (TCi,Hi).

Exercise. Show that uncoupled products of com-
pletely integrable systems are completely integrable,
and construct action-angle variables for the product
from action-angle variables for each component,

Remark. One way to analyze a complicated Hamil-
tonian system (TC,H) is to write H as a sum Hu+HI

where Hu is an uncoupled Hamiltonian and HI , the
“interaction” term is in some sense small. This ap-
proach is called perturbation theory
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Harmonic Oscillators

Perhaps the most basic Hamiltonian system is the so-
called “simple harmonic oscillator”. The configuraton
space C is R, so TC is R×R, and the kinetic and po-
tential energies are respectively K(x, v) := m

2 v
2, and

U(x, v) := 1
2kx

2. Corresponding to the coordinate x
on C we have the canonical coordinates q(x, v) := x
and q̇(x, v) := v for TC, so K(q, q̇) := m

2 q̇
2, U(q, q̇) :=

k
2 q

2, the Lagrangian is L(q, q̇) = m
2 q̇

2 − k
2 q

2, and
the total energy is H = m

2 q̇
2 + k

2 q
2 It follows that

the momentum conjugate to q is p := ∂L
∂q̇ := mq̇,

so the Hamiltonian H (which is just the total en-
ergy expressed as a function of q and p) is therefore
H(p, q) = p2

2m + k
2 q

2. This gives the (linear!) Hamil-
ton’s Equations, dq

dt = ∂H
∂p = p

m , dp
dt = −∂H

∂q = −kq,

or d2q
dt2 = −ω2q where ω :=

(
k
m

) 1
2 .
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Harmonic Oscillators (Cont.)

Exercise Show that the solution of the simple har-
monic oscillator with the initial conditions q(0) = q0
and p(0) = p0 is:

q = q0 cos(ωt) +
p0

mω
sin(ωt)

p = −mωq0 sin(ωt) + p0 cos(ωt).

Remark. The oscillator period is the time T it takes
to go through one cycle, i.e., ωT = 2π so T = 2π(m

k )
1
2 .

Exercise Show that if we rescale q and t (i.e., choose
new units for space and time) by q 7→

√
kq and t 7→

ωt, then in the new canonical coordinates H = 1
2p

2 +
1
2q

2, i.e., effectively m = k = ω = 1. Thus the Hamil-
tonian flow becomes rotation with unit angular ve-
locity. Show that if (r, θ) are the polar coordinates
associated to these rescaled q and p, then r2

2 and θ
are action-angle variables.
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Harmonic Oscillators (Cont.)

It is just as easy to solve is a system of n uncoupled
harmonic oscillators, Here C = Rn, TC = Rn ×Rn,
and H(qi, pi) :=

∑n
i=1(

p2
i

2mi
+ ki

2 q
2
i ), giving the Hamil-

tonian system dqi

dt = pi

mi
and dpi

dt = −kiqi. Since the
oscillators are uncoupled, the solutions are just the
solutions above of the original simple harmonic oper-
ator with the n different choices of the mass mi and
spring constant ki, giving n different angular frequen-
cies ωi := ( ki

mi
)

1
2 .

Apparently much more complicated is the system of n
coupled harmonic oscillators, where we replace the
term 1

2

∑n
i=1 kiq

2
i in the above Hamiltonian by the

more general 1
2

∑n
i,j=1 kijqiqj , where kij is a positive

definite symmetric matrix.
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Harmonic Oscillators (Cont.)

However this apparent extra complexity in the cou-
pled case is just an illusion. While it is true that the
off-diagonal “coupling constants”, kij give a qualita-
tively different physical behavior to the system, math-
ematically their is no difference between the coupled
and the uncoupled systems. For by the spectral the-
orem, by an appropriate change of variables we can
simultaneously diagonalize the two quadratic forms
1
2

∑n
i=1

p2
i

mi
and 1

2

∑n
i,j=1 kijqiqj , and this effectively

reduces the coupled to the uncoupled case. The new
basis (in which the kinetic energy and the potential
energy quadratic forms are both diagonal) is called
the normal modes for the coupled oscillator system
and the frequencies ωi of the equivalent uncoupled
oscillators are called the eigen-frequencies or the
characteristic frequencies of the system.
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Physics Near Equilibrium

It is a very remarkable fact that highly complex and
fundamentally non-linear physical systems frequently
appear to behave as if they were composed of uncou-
pled harmonic oscillators, We want to explain why
that is not so surprising (and in fact why it should
be expected) and also how we can predict the normal
modes and characteristic frequencies of the oscillators.

Let us suppose that the dynamics of our system is con-
trolled by a Lagrangian of the familiar form L(x, v) =
K(x, v) − U(x) with K(x, v) := 1

2 ‖v‖
2. If we choose

orthonormal coordinates with respect to the kinetic
energy term then it is exactly the same as the cor-
responding term for coupled harmonic oscillators, so
what we have to see is why it is often possible to ap-
proximate the potential U(x) by one having the form
1
2

∑n
i,j=1 kijqiqj of coupled harmonic oscillators.
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Physics Near Equilibrium (Cont.)

The key to understanding this phenomenon is the fact
that we normally observe the dynamical behavior of
physical systems when they are evolving close to a
position x0 in C of stable equilibrium, i.e., a non-
degenerate local minimum of U , so that in partic-
ular all of the first partial derivatives of U vanish
at x0 and the Hessian matrix kij := ∂2U

∂xi∂xj
(x0) is

positive definite. We can choose our coordinates so
that x0 is the origin, and since U is only defined up
to a constant, we can also suppose U(0) = 0, so if
we expand U in a Taylor series about x0, we find
U(x) = 1

2

∑n
i,j=1 kijxixj +O(‖x‖3).
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Physics Near Equilibrium (Cont.)

Exercise. Use conservation of total energy to show
that given ε > 0 there is a δ > 0 such that if the
initial position and velocity have norms less than δ,
then the solution will stay within ε of the origin for
all time. Then use the Gronwall inequality to show
that as ε goes to zero, solutions will behave more and
more like solutions of the harmonic oscillator system
that we get if we drop the O(‖x‖3) term.

We should still explain why we normally see systems
when they are close to an equilibrium. The reason
is that no realistic macroscopic physical system can
be totally isolated; there are always interactions with
its surroundings (friction) that continually reduce the
total energy of the system, and unless energy is added
to the system by some “forcing”, the system gradually
drifts toward a stable equilibrium.
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Physics Near Equilibrium (Example)

Consider a pendulum of length L and mass m with its
configuration described by the angle θ it makes with
the vertical direction. Its kinetic energy is 1

2mL
2θ̇2

and its potential energy is U(θ) = mgL(1 − cos(θ)).
Clearly θ = 0 is a stable equilibrium and the Tay-
lor series for U there is U(θ) = 1

2mgLθ
2 + O(θ4),

so the approximating harmonic oscillator has the La-
grangian L(θ, θ̇) = 1

2Mθ̇2 + 1
2kθ

2 where M = mL2

and k = mgL. Since M
k = L

g , the associated period is

2π
√

M
k = 2π

√
L
g .

82



Symmetries of Lagrangians

A diffeomorphism Φ : C → C induces a naturally as-
sociated diffeomorphism we will call TΦ : TC → TC,
namely TΦ(x, v) = (Φ(x), DΦx(v)).

Exercise. Show that if σ : I → C is a smooth path
in C and σ̇ : I → TC is its natural lifting, then TΦ ◦ σ̇
is the natural lifting of Φ ◦ σ. (This is the sense in
which TΦ is “natural”.)

Definition. If L is a Lagrangian function on TC,
then a diffeomorphism Φ of C is called a symmetry
of L if L ◦ TΦ = L.

Exercise. Show that if Φ : C → C is a symmetry of
a Lagrangian function L on TC then Φ preserves the
action functionalAL defined by L, i.e., if σ : [a, b] → C
is any smooth path in C, then AL(Φ ◦ σ) = AL(σ).
(Recall that AL(σ) :=

∫ b

a
L(σ̇(t) dt.)
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Symmetries of Lagrangians (Cont.)

Suppose that V is an autonomous vector field in C.
With respect to coordinates xi in C, the correspond-
ing ODE takes the form dxi

dt = Vi(x1, . . . , xn), and
the n functions Vi are called the components of V in
this coordinate system. It is customary to write V =∑

i Vi
∂

∂xi
, the reason being that if g is any smooth

real-valued function in C, then along any solution
curve σ(t) of V , the chain-rule gives dg

dt =
∑

i Vi
∂g
∂xi

. If
we have a Lagrangian function L on TC, we associate
to a smooth vector field V on C a smooth function V̂
on TC called its conjugate momentum (with respect
to L) by V̂ =

∑
i Vi

∂L
∂q̇i

. (Note that when V = ∂
∂xi

,
this gives just the momentum pi conjugate to qi.)

Exercise. The definition of V̂ seems to depend on a
choice of coordinates, but show that it has the follow-
ing intrinsic definition: V̂ (x, v) := 〈v, V 〉.
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Noether’s Principle

Now suppose that the vector field V is complete and
that the one-parameter group of diffeomorphisms φt

generated by V are symmetries of L. In that case we
call V an infinitesimal symmetry of L. (Note that
by definition, if p ∈ C then V (p) := d

ds

∣∣
s=0

φs(p).)

Emmy Noether’s Symmetry Principle. If V is
an infinitesimal symmetry of the Lagrangian L, then
the conjugate momentum V̂ is a constant of the mo-
tion of Lagrange’s Equations.

PROOF. Let σ : [a, b] → C be a solution of the
Lagrange equations. What we have to show is that
V̂ (σ(t))

]b
a

:= V̂ (σ(b)) − V̂ (σ(a)) = 0. Let φs denote
the one-parameter group of symmetries of L gener-
ated by V and define a variation σs : [a, b] → C by
σs := φs ◦ σ.
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Noether’s Principle (Cont.)

Since the φs are symmetries of L, AL(σs) is constant
in s and hence d

ds

∣∣
s=0

AL(σs) = 0. But we evalu-
ated d

ds

∣∣
s=0

AL(σs) earlier in the course of deriving
Lagrange’s equations, and we found:

dAL(σs)
ds

∣∣∣∣∣
s=0

=
∑

i

∫ b

a

(
∂L
∂qi

− d

dt

(
∂L
∂q̇i

))
· δσi(t) dt

+
∑

i

∂L
∂q̇i

· δσi(t)

]b

a

,

where by definition δσ(t) := d
ds

∣∣
s=0

φs(σ(t)), which is
in turn, by definition of V , just V (σ(t)). Since σ is a
solution of Lagrange’s equations, the first sum above
vanishes, leaving just

∑
i

∂L
∂q̇i

· Vi(σ(t))
]b
a

= V̂ (σ(t)),

proving that V̂ (σ(t))
]b
a

= 0.
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Particle Mechanics

We next consider briefly the mechanics of N particles
Pi in Rk. Configuration space C is now (Rk)N . If x =
(x1, . . . , xN ) is a point of C, then xi = (xi

1, . . . , x
i
k)

represents the position of Pi. If mi is the mass of Pi,
then K(x, v) = 1

2

∑N
i=1mi

∥∥vi
∥∥2. We assume that for

1 ≤ i < j ≤ N there is a potential function Uij : R →
R giving the interaction between Pi and Pj . Namely,
the force Fij on Pi due to Pj is U ′ij(

∥∥xi − xj
∥∥)rij ,

where rij is the unit vector pointing in the direction
from xj to xi. (Notice that Fji = −Fij in accor-
dance with Newton’s Third Law of Motion.) The to-
tal force on Pi is then Fi :=

∑
j Fij , and is given

by Fi = ∂U
∂xi (x), where U(x) = U(x1, . . . , xN ) :=∑

i<j Uij(‖xi − xj‖). With these definitions, the gen-
eralized Newton’s Equations for the Lagrangian L :=
K−U are the usual Newton’s Equations mi

d2xi

dt2 = Fi.
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Conservation Laws

What conservation laws can we deduce from these as-
sumptions? Because of Noether’s Principle, we can
rephrase that as: “What diffeomorphisms of C are
symmetries of the Lagrangian?” We shall see that
this approach leads to the so-called classical conser-
vation laws, i.e., the fact that the components of total
linear and total angular momentum are constants of
the motion.

If γ is any diffeomorphism of Rk, let Γ denote the cor-
responding “diagonal” diffeomorphism of C = (Rk)N ,
i.e., Γ(x1, . . . , xN ) = (γ(x1), . . . , γ(xN )). Note that if
γ is a translation or a rotation then γ(xi) − γ(xj) =
γ(xi − xj) and so

∥∥γ(xi)− γ(xj)
∥∥ =

∥∥xi − xj
∥∥.

Exercise. Show that if γt is any one-parameter group
of Euclidean motions of Rk then Γt is a symmetry of
the above N -particle Lagrangian on TC.
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Conservation Laws (Cont.)

Exercise. Show that the invariance of the N -particle
Lagrangian under translations leads to “conservation
of total linear momentum”, i.e., the fact that each
component of the total linear momentum vector P =
m1q̇

1 + · · ·+mN q̇
N is a constant of the motion.

Exercise. In the case, k = 3, the vector field V on
R3 that generates the one parameter group of rota-
tions about an axis x is V (v) = x × v. Deduce that
invariance of the N -particle Lagrangian under rota-
tions leads to “conservation of total angular momen-
tum”, i.e., the fact that each component of the total
angular momentum vector Ω = m1(q1 × q̇1) + · · · +
mN (qN × q̇N ) is a constant of the motion.
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Scaling Invariance

Multiplying a Lagrangian by some non-zero constant
factor leaves the Euler-Lagrange equations and hence
the extremals unchanged. This simple fact can be
combined with some scaling symmetries to derive many
non-obvious conclusions. Kepler’s Third Law is an
example.

Let S be an N -particle system with Lagrangian L =
K(ẋ) − U(x) and let us assume that the potential
function U is positively homogeneous of degree k, i.e.,
for all ρ > 0, U(ρx) = ρkU(x). Let’s investigate how
various quantities change under the transformations
(corresponding to a change of length and time units)
x→ ρx, t→ σt.
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Scaling Invariance (Cont.)

By assumption, U → ρkU , and clearly the velocities
satisfy ẋ → (ρ/σ)ẋ, so the kinetic energy K satisfies
K → ( ρ

σ )2K. Thus if ( ρ
σ )2 = ρk, i.e., if σ = ρ1− 1

2 k,
then both K and U (and hence L) are multiplied by
the same factor, and so, by the above observation we
derive the following:

Scaling Principle. If the potential energy U is pos-
itively homogeneous of degree k and x(t) is an ex-
tremal of the Lagrangian L = K − U , then for any
positive ρ, ξ(t) = ρ x(ρ1− 1

2 kt) is also an extremal.
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Scaling Invariance (Cont.)

Corollary. If the potential U is positively homoge-
neous of degree k and x(t) is a periodic trajectory of

period T , then ξ(t) = ρ x(ρ1− 1
2 kt) is a periodic tra-

jectory of period ρ1− 1
2 kT .

For an inverse square force law, U(x) ∼ 1/ ‖x‖, so U is
homogeneous of degree k = −1. Hence if we scale an
orbit of period T by a factor ρ we get another closed
orbit whose period T ′ is Tρ3/2, that is, the square of
the period scales as the cube of the size of the orbit.
This is Kepler’s Third Law of Planetary Motion.

Exercise. Suppose a particle attracted to the origin
by a force F (x) = −kx (Hookes Law). This is a
central force with potential U(x) = 1

2k ‖x‖
2, i.e., an

harmonic oscillator. Show that all of its closed orbits
have the same period.
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The Two Body Problem

A system of two particles in R3 is referred to as a“two-
body problem”. Newton’s Equations are a system of
six non-linear, second order ODE (for the three com-
ponents of x1(t) and the three components of x2(t)).
It is a highly remarkable fact that we can reduce this
system of ODE to a much simpler form, eliminating
many of the variables, and then explicitly solving the
simplified system by quadratures.

This is not an accident—the explicit integration rests
on the six classical constants of the motion, the three
components of total linear momentum, and the three
components of total angular momentum. And these
integrals in turn have their origin in the six parameter
Euclidean group of symmetries of the problem.
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The Two Body Problem (Cont.)

We make use of conservation of total linear momen-
tum by choosing center of mass coordinates, i.e., we
force the center of mass to be at the origin by the
constraint equation m1x

1 +m2x
2 = 0.

This cuts out a three-dimensional subspace C′ of the
six dimensional configuration space C = (R3)2, and
we define so-called relative position coordinates X =
(X1, X2, X3) on C′ by X = x1 − x2

It is easy to check that on C′, x1 = m2
m1+m2

X and x2 =
− m1

m1+m2
X, so if we define Ẋ := ẋ1 − ẋ2, the kinetic

energy is K = 1
2m
∥∥∥Ẋ∥∥∥2

, where m is the so-called
reduced mass: m := m1m2

m1+m2
, and the Lagrangian is

L(X, Ẋ) = 1
2m
∥∥∥Ẋ∥∥∥2

+ U(‖X‖) on C′.
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The Two Body Problem (Cont.)

If we can find the trajectories in C′ for this Lagrangian,
then the above formulas for x1 and x2 in terms of X
give the trajectories of the original Lagrangian, so this
is a true reduction of the problem.

We now use conservation of angular momentum to
reduce the problem further, namely to motion in a
plane Π.

Note that for the reduced problem, the linear mo-
mentum is p = mdX

dt so p is parallel to dX
dt and hence

dX
dt ×p = 0. Now the angular momentum is J = X×p.

Since the force −∇U is in the radial direction X, dp
dt

is parallel to X, so X× dp
dt also vanishes and it follows

that dJ
dt = dX

dt × p+X × dp
dt = 0, proving that J is a

constant of the motion (as we already knew).
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The Two Body Problem (Cont.)

Thus the plane Π normal to J is fixed in space, and
of course the radius vector X lies in this plane.

With respect to polar coordinates (r, θ) in Π, the La-
grangian takes the form L(r, θ, ṙ, θ̇) = 1

2m(ṙ2+r2θ̇2)−
U(r), so the Euler-Lagrange equations are now:

m
d2r

dt2
=

d

dt

(
∂L

∂ṙ

)
=
∂L

∂r
= mrθ̇2 − ∂U

∂r
,

d

dt
(mr2θ̇) =

d

dt

(
∂L

∂θ̇

)
=
∂L

∂θ
= 0.
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The Two Body Problem (Cont.)

The second of these equations integrates immediately,
and seems to give yet another constant of the motion:
mr2θ̇ = C. However, it is easy to verify that mr2θ̇
is just the magnitude ‖J‖ of the total angular mo-
mentum vector, so this is really not an independent
new conservation law. In fact, note that choosing the
plane Π only fixed the direction of J (two real pa-
rameters) and the equation mr2θ̇ = ‖J‖ gives the
third remaining relation that follows from the conser-
vation of angular momentum.
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The Two Body Problem (Cont.)

Since m is a constant, we can also write the second of
the Euler-Lagrange equations as d

dt (r
2θ̇) = 0, and as

such it has an interesting geometric interpretation.

In fact, 1
2r

2 dθ
dt is clearly the rate at which the ray from

the origin to the point (r, θ) is sweeping out area, so
the second equation is just Kepler’s Second Law of
Planetary Motion (equal areas in equal times).

An important thing to note is that Kepler’s Second
Law holds for any central force, not just for a 1

r2 force,
and also that it is really just another way of stating
the constancy of the magnitude of total angular mo-
mentum.
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The Two Body Problem (Cont.)

Finally, the integrated form of the second equation
allow us to write the total energy E = K + U as

E =
1
2
m(ṙ2 + r2θ̇2) + U(r)

=
1
2
mṙ2 +

‖J‖2

2mr2
+ U(r).

If we solve this for ṙ = dr
dt , then invert and integrate,

we get an explicit formula for t as a function of r:

t =
∫ r

r0

dr√
2
m [E − U(r)]−

(
‖J‖
mr

)2
.
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The Two Body Problem (Cont.)

On the other hand, from dθ = ‖J‖
r2 dt and the preced-

ing formula for dt we find:

θ =
∫ r

r0

‖J‖ dr

r2

√
2m[E − U(r)]−

(
‖J‖

r

)2
.

These latter two equations give a fairly explicit answer
of the problem of finding the motion of a single par-
ticle under the action of a general central force, and
hence also of the problem of the motion of a closed
system of two particles under a central force. How-
ever, for a 1

r potential, say U(r) = −k
r we can give a

more satisfying closed form solution.
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The Two Body Problem (Cont.)

In fact in this case the right hand side of the above
formula for θ reduces to a well-known elementary in-
tegral and we find:

θ = cos−1

 ‖J‖
r + km

‖J‖√
2mE + k2m2

‖J‖2

+ θ0,

so that
r =

p

1 + e cos(θ − θ0)
,

where p = ‖J‖2
km and e =

√
1 + 2E‖J‖2

k2m , the standard
polar coordinate form of a conic section with eccen-
tricity e and semi latus rectum p.
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Lattice Models

Finally, we consider what is called a one-dimensional
lattice of N oscillators with nearest neighbor interac-
tions and zero boundary conditions.

We imagine a “string” consisting of particles that are
positioned along the x-axis from 0 to its length `.
The N particles have equilibrium positions pi = ih,
i = 0, . . . , N − 1, where h = `/(N − 1) is the lattice
spacing, so their positions at time t are Xi(t) = pi +
xi(t), (where the xi represent the displacements of
the oscillators from equilibrium). The force attracting
any oscillator to one of its neighbors is taken as k(δ+
αδ2), δ denoting the “strain”, i.e., the deviation of the
distance separating these two oscillators from their
equilibrium separation h. (Note that when α = 0 this
is just the Hooke’s law force with spring constant k.)
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Lattice Models (Cont.)

The force acting on the i-th oscillator due to its right
neighbor is F (x)+i = k[(xi+1 − xi) + α((xi+1 − xi)2],
while the force acting on the it due to its left neighbor
is F (x)−i = k[(xi−1 − xi)− α((xi−1 − xi)2]. Thus the
total force acting on the i-th oscillator will be the
sum of these two forces, namely: F (x)i = k(xi+1 +
xi−1−2xi)[1+α(xi+1−xi−1)], and assuming that all
of the oscillators have the same mass, m, Newton’s
equations of motion read:

mẍi = k(xi+1 + xi−1 − 2xi)[1 + α(xi+1 − xi−1)],

with the boundary conditions x0(t) = xN−1(t) = 0.
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Lattice Models (Cont.)

It will be convenient to rewrite Newton’s equations
in terms of parameters that refer more directly to the
original string that we are trying to model. Namely,
if ρ denotes the density of the string, then m = ρh,
while if κ denotes the Young’s modulus for the string
(i.e., the spring constant for a piece of unit length),
then k = κ/h will be the spring constant for a piece
of length h. Defining c =

√
κ/ρ we can now rewrite

Newton’s equations as:
(LE)

ẍi = c2
(
xi+1 + xi−1 − 2xi

h2

)
[1 + α(xi+1 − xi−1)],

and in this form we shall refer to them as the FPU
Lattice Equations.
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Lattice Models (Cont.)

We can now “pass to the continuum limit”; i.e., by
letting N tend to infinity (so h tends to zero) we can
attempt to derive a PDE for the function u(x, t) that
measures the displacement at time t of the particle of
string with equilibrium position x. We shall leave the
nonlinear case for later, and here restrict our attention
to the linear case, α = 0. If we take x = pi, then by
definition u(x, t) = xi(t), and since pi + h = pi+1

while pi − h = pi−1, with α = 0, the latter form of
Newton’s equations gives:

utt(x, t) = c2
u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2
.
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Lattice Models (Cont.)

By Taylor’s formula:

f(x± h) =
f(x)±hf ′

(x)+h2

2! f
′′
(x)±h3

3! f
′′′

(x)+h4

4! f
′′′′

(x)+O(h5),

and taking f(x) = u(x, t) gives:

u(x+h,t)+u(x−h,t)−2u(x,t)
h2 =

uxx(x, t)+
(

h2

12

)
uxxxx(x, t) +O(h4),

so letting h → 0, we find utt = c2uxx, i.e., u satisfies
the linear wave equation, with propagation speed c
and the boundary conditions u(0, t) = u(`, t) = 0,
and initial conditions ut(x, 0) = 0, u(x, 0) = u0(x).
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Appendix A

Smoothness with Respect

to Initial Conditions
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Suppose that V is a C1 vector field on Rn and assume
that the maximal solution σp of dx

dt = V (x) is defined
on I = [a, b]. For each x ∈ Rn, the differential of
V at x is a linear map DVx : Rn → Rn, and it is
continuous in x since V is C1. Thus A(t) = DVσp(t)

defines a continuous map A : I → L(Rn). The differ-
ential equation dx

dt = A(t)x is an example of a non-
autonomous linear ODE, studied in Part I. It is called
the variational equation associated to the solution
σ. By the general theory of such equations developed
in Part I, we know that for each ξ in Rn, the vari-
ational equation will have a unique solution u(t, ξ)
defined for t ∈ I, and satisfying the initial condition
u(t0, ξ) = ξ. For each t in I, the map ξ 7→ u(t, ξ) is
a linear map of Rn to itself that we will denote by
δσp(t). What we are going to see next is that the
map (t, p) 7→ σp(t) is C1 and that δσp(t) is the dif-
ferential at p of the map q 7→ σq(t) of Rn to itself.
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(Note that the derivative of σp(t) with respect to t
obviously exists and is continuous since σp(t) satisfies
σ′p(t) = V (σp(t)). )

Exercise Check that if q 7→ σq(t) is indeed differen-
tiable at p then its differential must in fact be δσp(t).
Hint: Calculate the differential of both sides of the
differential equation with respect to p to see that
Dσp(t)(ξ) satisfies the variational equation. On the
right side of the equation use the chain rule and on
the left side interchange the order of differentiation.

Recall that (by definition of the differential of a map-
ping) in order to prove that q 7→ σq(t) is differentiable
at p, and that u(t, ξ) = δσp(t)(ξ) is its differential at
p in the direction ξ, what we need to show is that if
g(t) := ‖(σp+ξ(t)− σp(t))− u(t, ξ)‖ then 1

‖ξ‖g(t) goes
to zero with ‖ξ‖. What we will show is that there are
fixed positive constants C and M such that for any
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positive ε there exists a δ so that g(t) < Cε ‖ξ‖ eMt

provided ‖ξ‖ < δ, which clearly implies that 1
‖ξ‖g(t)

goes to zero with ‖ξ‖, uniformly in t. To prove the
latter estimate, it will suffice by Gronwall’s inequality
to show that g(t) < Cε ‖ξ‖+M

∫ t

0
g(s) ds.

Exercise Derive this estimate. Hint:
σp+ξ(t) = p + ξ +

∫ t

0
V (σp+ξ(s)) ds and σp(t) = p +∫ t

0
V (σp(s)) ds, while u(t, ξ) = ξ+

∫ t

0
DV

σp(s)u(s, ξ) ds.
Taylor’s Theorem with Remainder gives V (q + x) −
V (q) = DVq(x) + ‖x‖ r(q, x) where ‖r(q, x)‖ goes to
zero with x, uniformly for q in some compact set.
Take q = σp(s) and x = σp+ξ(s) − σp(s) and verify
that g(t) =
‖ξ‖

∫ t

0
ρ(σp(s), σp+ξ(s)− σp(s)) ds+

∫ t

0
DV

σp(s)g(s) ds.

Now choose M = sups∈I

∥∥∥DVσp(s)

∥∥∥ and recall that
from the theorem on continuity with respect to initial
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conditions we know that ‖σp+ξ(s)− σp(s)‖ < ‖ξ‖ eKs.
The rest is easy, and we have now proved the case
r = 1 of the following theorem.

Smoothness w.r.t. Initial Conditions.
Let V be a Cr vector field on Rn, r ≥ 1, and let σp(t)
denote the maximal solution curve of dx

dt = V (x) with
initial condition p. Then (p, t) 7→ σp(t) is a Cr map.

Exercise Prove the general case by induction on r.
Hint: As we saw, the first order partial derivatives
are solutions of an ODE whose right hand side is of
class Cr−1.
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