
LATTICE MODELS

Martin A. Guest

Lattice models are examples of systems of ordinary differential equations. They appear
naturally in physics and they provide very good experimental material for mathematics.
We shall use them to illustrate some standard (and less standard) mathematical techniques
for solving differential equations. At the same time we shall consider some philosophical
questions:

What kinds of differential equations are there?

For example, it is well known that linear equations behave very differently to nonlinear
equations. But are there other qualities that can be used to distinguish different types of
differential equations ?

How can geometry (differential geometry, manifold theory) be used to study
and solve differential equations?

The Euclidean geometry of Rn is obviously relevant. But what about other manifolds and
other Riemannian metrics, or more sophisticated geometrical structures?

Is there a way to recognise or visualize the “integrability” of differential
equations?

For example, when the solution is a curve in R2 or R3, we can visualize it directly.
Sometimes we can “see ” analytic properties of the solution, such as whether it is bounded
or smooth. But how about solutions in higher dimensional Euclidean space, or in more
complicated manifolds?

We shall not answer these vague and difficult questions in the lectures. But we shall
use lattice models to illustrate that the questions are important, and to give some partial
answers.

Many of the examples mentioned in the lectures can be found in 3D-XplorMath ([3DXM]).
Alternatively, many of them can be produced “by hand” using software such as Maple,
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Mathematica, or Matlab.

We shall use the following terminology:

[3DXM:ODE:ODE(1D):X] means: in the 3D-XplorMath software, in the ODE category,
in the ODE(1D) subcategory, look at — or make some choices for — the object called X.

PROBLEM means: something to think about. It may be easy or hard; computers may
or may not be helpful.

PROJECT means: a computer project, to be done using software such as Maple, Math-
ematica, or Matlab.

§1 The differential equation zoo

Before discussing lattice models, we shall look at some simpler systems of ordinary
differential equations.

Systems of linear equations.

Consider the system

y′1 = ay1 + by2

y′2 = cy1 + dy2

of two linear first order differential equations for the (real) functions y1(t), y2(t), where
a, b, c, d are (real) constants. In matrix form we can write this system as Y ′ = AY, where

Y =
(

y1

y2

)
, A =

(
a b
c d

)
.

The unique solution with y1(0) = α, y2(0) = β can be written down very tidily as

Y = etA

(
α
β

)
.

A more computational, and more informative, method is to make a linear change of vari-
ables:

Z = PY

where P is an invertible 2× 2 matrix. We obtain

Z ′ = PAP−1Z,
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and we can choose the matrix P so that PAP−1 has the simplest possible form. For
example, if A is symmetric (At = A), then, by linear algebra, we may choose P such that
PAP−1 is diagonal. This reveals a little bit of geometry, as the columns v1, v2 of the
matrix P−1 are the eigenvectors of the original matrix A:

P−1 =

 | |
v1 v2

| |

 satisfies AP−1 = P−1

 λ1 0

0 λ2

 =

 | |
λ1v1 λ2v2

| |


The directions of these eigenvectors are visible if one looks at the graphs of the curves
(y(t), y′(t)) in (y1, y2)-space.

[3DXM:ODE:ODE(2D)-1st Order:USER]

Note that a second order equation

y′′ + py′ + qy = 0

gives rise to a system of the above type, by the standard device of introducing y1 = y,
y2 = y′, so that (

y1

y2

)′

=
(

0 1
−q −p

) (
y1

y2

)
.

In particular, the famous equation y′′ = −ky (with k > 0) can be solved this way. It has
y = sin

√
kt and y = cos

√
kt as independent solutions. In both cases, however, the graph

of the curve (y(t), y′(t)) is a circle, and the eigenvectors cannot be “seen”, because they
are not real (the matrix A is not symmetric).

The different possibilities are determined by the Jordan normal form of the matrix A:
for any A, we can find P with

PAP−1 =
(

λ1 µ
0 λ2

)
,

and the different kinds of pictures correspond to (1) µ = 0 and λ1, λ2 real, (2) µ = 0 and
λ1, λ2 = λ̄1 non-real, (3) µ 6= 0, λ1 = λ2, all real.

Slightly more interesting pictures appear when one looks at the graphs of solutions Y (t)
of the second order system

Y ′′ = AY.

This is of course equivalent to a four-dimensional first order system, and there is a unique
solution when the initial values of Y and Y ′ are specified.

[3DXM:ODE:ODE(2D)-2nd Order:USER]

PROBLEM: Explain these pictures !
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The equation y′′ = −ky represents simple harmonic motion in physics, and an idea
from physics leads to another method of solving the equation. Namely, if we define

K =
1
2
y′

2 (kinetic energy)

U =
k

2
y2 (potential energy)

then we see that the total energy (or Hamiltonian) H = K + U is a “conserved quantity”:

d

dt
K = y′y′′ + kyy′ = y′(−ky) + kyy′ = 0.

That is, if y is a solution of the diffferential equation, then H is constant, i.e. 1
2y′

2 + k
2y2 =

C for some C. But then we have a first order equation which can be solved directly by
integration (by “quadrature”).

Generalizing this to the system Y ′′ = AY , we see that

H =
1
2
y′1

2 +
1
2
y′2

2 + U

is a conserved quantity if ay1 + by2 = − ∂U
∂y1

and cy1 + dy2 = − ∂U
∂y2

. This condition is
satisfied if b = c (i.e. A is symmetric), in which case U = − 1

2 (ay2
1 + 2by1y2 + dy2

2).

We can look for conserved quantities for any system of equations, even when there is
no obvious physical quantity that seems likely to be conserved, and even when the system
itself has no obvious physical meaning. (If this direction of thinking does not worry you,
you are a mathematician!) We can go on to ask whether it is possible to have more than
one conserved quantity, and, if so, how many essentially different ones.

PROBLEM: How many conserved quantities can the system Y ′′ = AY have?

We shall see that systems of nonlinear equations offer more challenging problems.

Systems of nonlinear equations.

The pendulum equation y′′ = −k sin y is a familiar example of a nonlinear equation
from physics.

[3DXM:ODE:ODE(1D)-2nd Order:Pendulum] or

[3DXM:ODE:ODE(2D)-1st Order:Pendulum]

For small values of y, sin y is near to y, so the situation is similar to the case of y′′ = −ky.
For general y, the total energy H = 1

2y′
2−k cos y is a conserved quantity, so we can reduce
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the equation to a first order equation and then express the solution as an integral. (The
integral gives an elliptic function, but we have no objections to this.)

More generally, consider the system

y′′1 = F1(y1, y2)

y′′2 = F2(y1, y2)

where F1, F2 are (not necessarily linear) functions. In this situation

H =
1
2
y′1

2 +
1
2
y′2

2 + U

is a conserved quantity if F1(y1, y2) = − ∂U
∂y1

and F2(y1, y2) = − ∂U
∂y2

. A necessary condition
for the existence of such a function U is ∂F1

∂y2
= ∂F2

∂y1
. If F1, F2 are defined on the entire

(y1, y2)-plane R2 (or more generally, on a simply connected region containing the solutions
in question), this condition is sufficient for the existence of U .

Unfortunately it is hopeless to expect conserved quantities in general. This is easy
to believe, but not easy to prove. In fact, the existence of systems with no conserved
quantities is related to the existence of “chaotic” systems, such as the famous Lorenz
attractor.

[3DXM:ODE:ODE(3D)-1st Order:Lorenz]

We shall not discuss chaotic systems, except to say that they are the opposite ex-
treme from systems with many conserved quantities. It is important to keep in mind
that “chaotic” is not the same as “nonlinear” (the pendulum is an example of a nonlinear
system which has “many conserved quantities”).

If one looks at the graphs of solutions Y (t) of the second order nonlinear system

Y ′′ = AY + nonlinear term

one can see how the nonlinear term disturbs the simple geometry of the linear case.

[3DXM:ODE:ODE(2D)-2nd Order:USER]

PROBLEM: How are the pictures affected by whether the “potential function” U exists?

Other candidates for conserved quantities.

Let us return to the linear system Y ′′ = AY , briefly. We shall assume that A = At, so
that PAP−1 is diagonal, with eigenvalues λ1, λ2, for a certain matrix P . We have seen
that the total energy H is a conserved quantity. It can be written

H =
1
2

( y′1 y′2 )
(

y′1
y′2

)
− 1

2
( y1 y2 )

(
a b
b d

) (
y1

y2

)
=

1
2
Y ′tY ′ − 1

2
Y tAY
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and when we make the change of variables Y = P−1Z we obtain

H =
1
2
Z ′tZ ′ − 1

2
ZtPAP−1Z =

1
2
Z ′tZ ′ − 1

2
Zt

(
λ1 0
0 λ2

)
Z.

Since (
λ1 0
0 λ2

)
=

(
λ1 0
0 0

)
+

(
0 0
0 λ2

)
we have a very natural decomposition of H as

H = H1 + H2 =
1
2
(z′1

2 − λ1z
2
1) +

1
2
(z′2

2 − λ1z
2
2).

Both H1 and H2 are conserved quantities as well: we have decomposed the problem
Y ′′ = AY into two separate problems z′′i = λ1zi, i = 1, 2, and the total energy of each of
these separate problems is conserved. This decomposition is called the decomposition into
normal modes. The system is said to be in the i-th mode if zj ≡ 0 for all j 6= i. (A typical
solution of the system can be regarded as being in a combination of the normal modes.)
The conserved quantity Hi = 1

2 (z′i
2 − λiz

2
i ) is called the energy of the i-th normal mode.

Now, this kind of separation will not be possible for a nonlinear system such as Y ′′ =
AY + nonlinear term. (Indeed, it is not possible even for the linear system Y ′′ = AY
for a general matrix A.) As a slight generalization of the linear case, let us consider the
system Y ′′ = −∇U where

−2U = ay2
1 + 2by1y2 + dy2

2 + ey3
1 + fy2

1y2 + gy1y
2
2 + hy3

2

(thus the nonlinear term in the differential equation is quadratic). A linear change of
variable in this case cannot be expected to decompose both the quadratic term and the
cubic term of U in an equitable way.

One way around this difficulty is to forget the analysis of the linear case, and divide up
the total energy in any reasonably symmetrical way, for example

H1 =
1
2
y′1

2 + ay2
1 + by1y2 + y1(ey2

1 +
1
2
fy1y2 +

1
2
gy2

2)

H2 =
1
2
y′2

2 + by1y2 + dy2
2 + y2(

1
2
fy2

1 +
1
2
gy1y2 + hy2

2)

If we are lucky, H1 and H2 will be conserved quantities. If not, we can ask how H1 and
H2 they vary, for example whether they satisfy diffferential equations which are simpler
than the original system.

An interesting aspect of this “artificial” procedure is that, if we are dealing with a
solution in which y1, y2 remain small, then the contributions of the nonlinearity (the cubic
terms of H1,H2) are very small indeed. So the question of how to divide up the cubic
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terms of H might be irrelevant, and we may as well use the same H1,H2 as in the linear
case, i.e. the energies of the normal modes:

H1 =
1
2
(z′1

2 − λ1z
2
1)

H2 =
1
2
(z′2

2 − λ1z
2
2).

PROJECT 1: Use a computer to study the following questions. In each case, consider
whether the solution Y remains small or not. Take A to be a 2 × 2 or 3 × 3 matrix. (1)
Let A be a matrix which is not symmetric. Consider the system Y ′′ = AY for several
such A. What happens to the energies Hi = 1

2 (z′i
2 − λiz

2
i ) of the normal modes? (2)

Let A be a symmetric matrix. Consider some examples of systems of the form Y ′′ =
AY + nonlinear term. What happens to the energies Hi = 1

2 (z′i
2 − λiz

2
i ) of the normal

modes? �

Without any experimental evidence or physical intuition, it is difficult to guess what
will happen, as various scenarios are plausible. The energies of the normal modes might
remain approximately constant, or they might vary in a simple and predictable way, or
one of them might eventually dominate the others, or they might vary “randomly”, etc.
In any case, the kind of behaviour should reflect some underlying mathematical structure
of the system.

There are various factors to consider when we perform computer experiments to observe
the energies of the normal modes:

(i) Accidental mathematical (or physical) special features of the particular system.

(ii) The accuracy of the approximation of the nonlinear system by the linear system (and
the accuracy of the approximation of the respective normal modes).

(iii) Numerical error in the computer calculations.

(iv) The possibility of misinterpretation of the experimental results (e.g. by running the
experiment for too short a time).

In other words, we have to be very careful.

The Fermi-Pasta-Ulam experiment.

Physical intuition was the driving force in the experimental calculations of Fermi, Pasta
and Ulam when they used one of the first electronic computers, in 1954, to investigate the
behaviour of the energies of the normal modes of a certain nonlinear system of differential
equations. Their system was a model for a collection of particles, and they expected that
the effect of the nonlinearity would be “thermalization”: the energies of the normal modes
vary unpredictably at first, but eventually they all settle down (roughly speaking) to the
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same stable value. This is the kind of “random” behaviour expected in thermodynamics,
at least.

But it did not happen!

The energies of the normal modes varied in a complicated way, but certainly not ran-
domly. The experimenters found this behaviour amazing, and could not explain it. Over
the next 20 years, a tremendous amount of mathematics was discovered in attempts to
understand the situation. A detailed historical account of this story, and how it led to
such an unexpected mathematical revolution, can be found in [We].

In the next section we will introduce the Fermi-Pasta-Ulam system and various related
“lattice models”.

§2 Lattice models

The motion of a collection of N particles, interconnected by springs, is governed by
Newton’s equations, a system of second order ordinary differential equations for N func-
tions y1, . . . , yN . If the springs satisfy Hooke’s law, the system is linear; it can be written
in the form Y ′′ = AY for some matrix A, and the matrix is necessarily symmetric. In
general, when Hooke’s law does not hold, additional nonlinear terms are present.

This kind of system (linear or nonlinear) is called a lattice model. It differs from the
examples in §1 only because of its physical interpretation: we are tempted to take N to
be large, and to think of a “lattice” of particles.

We shall consider a one-dimensional lattice, where N particles of unit mass lie on a
straight line, and we shall denote their positions by

Y1(t), Y2(t), . . . , YN (t)

at time t.

We shall assume that the force in the spring connecting Yi to Yi+1 depends upon the
extension of the spring from an equilibrium position of the whole lattice in which Yi = ei.
Let yi = Yi − ei be the displacement of Yi from its equilibrium position ei. Then the
extension of the spring at time t is yi+1(t)− yi(t), and our assumption can be written

force on Yi from the spring connecting Yi to Yi+1 = T (yi+1 − yi)

for some function T (we assume the same function T applies to all springs). The force on
Yi+1 from the same spring will be −T (yi+1 − yi).
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When 1 < i < N , Newton’s equation for Yi is

(Y ′′
i =) y′′i = T (yi+1 − yi)− T (yi − yi−1),

and in the special case when Hooke’s law holds, so that T (y) = ky for some positive
constant k, it is

y′′i = kyi−1 − 2kyi + kyi+1.

For the cases i = 1 and i = N , the equations are similar, but with appropriate “boundary
conditions” (which we shall discuss later).

For the initial positions we take yi(0) = ai, with e1 + a1 < e2 + a2 < · · · < eN + aN .
For the initial velocities we take Y ′

i (0) = y′i(0) = vi. Of course we might modify our
assumptions later, but for the moment we are thinking of the motion of a one-dimensional
string of particles after it has been disturbed slightly from an equilibrium position. Intu-
ition suggests that the particles will move in a complicated way, but not very far from the
equilibrium position — if the initial velocities are small, and if T (y) is approximately ky.

In this situation, it seems very plausible that “thermalization” will occur: when N is
large, the interactions will be so complicated that, eventually, the particles will all be
jiggling slightly in a very similar fashion. After a sufficiently long time, any unusually
active particle will be “damped” by its neighbours.

Of course, in the linear case, this does not happen. From §1, we know (as the coefficient
matrix A is symmetric) that the motion of the string will be simple harmonic motion in
disguise. But in the nonlinear case, the interactions should be truly complicated. This was
the motivation for the experiment of Fermi, Pasta and Ulam (and in fact their goal was
to measure the rate of thermalization — they were confident that thermalization would
occur!)

[3DXM:ODE:Lattice Models:FERMI-PASTA-ULAM,USER]

PROJECT 2: Write a program to carry out the Fermi-Pasta-Ulam experiment. In that
experiment, the function T was T (y) = y + 0.3y2, but you can try other functions as well.
You can vary the parameter 0.3 too. You can try various boundary conditions, for example
y1 = yN = 0 or y1 = yN . �

To formulate precise questions about such lattices, let us consider first some examples
where just two particles move.

Two particles, free ends.

In this case the equations are

y′′1 = T (y2 − y1)

y′′2 = −T (y2 − y1)
9



and these are equivalent to the simpler system

(y1 + y2)′′ = 0

(y1 − y2)′′ = 2T (y2 − y1).

Let assume that T (y) = ky+ nonlinear terms. The matrix system is(
y1 + y2

y1 − y2

)′′

=
(

0 0
0 −2k

) (
y1 + y2

y1 − y2

)
+ nonlinear terms

and a suitable coordinate change is z1 = y1 + y2, z2 = y1 − y2. The energies H1,H2 of the
normal modes are defined as in §1.

For example, in the case T (y) = ky, the general solution is

y1 + y2 = At + B, y1 − y2 = C cos
√

2kt + D sin
√

2kt

We can identify two special kinds of solution:

(1) y1 + y2 = At + B, y1 − y2 = 0

This is motion in the first normal mode. The distance between the particles remains
constant (Y2−Y1 = e2− e1 + y2− y1 = e2− e1) and the whole spring slides along the line,
with constant velocity.

(2) y1 − y2 = C cos
√

2kt + D sin
√

2kt, y1 + y2 = 0

This is motion in the second normal mode. The centre of the spring remains fixed, and
the particles move with equal and opposite simple harmonic motion. Evidently

H1(t) = constant ×A2

H2(t) = constant × k(C2 + D2)

and these are indeed independent of t — they are conserved quantities of the linear system.

As a nonlinear example, let T (y) = sin y. Then we may choose z1 = y1+y2, z2 = y1 − y2

as before. We have y1 + y2 = At + B as in the previous example. But y1 − y2 is more
complicated, and H2 is not independent of t. (Nevertheless, H2 is a periodic function —
it behaves “predictably”— and for small values of y1 − y2 it is approximately constant.)

Four particles, both ends fixed.

Consider Y0, Y1, Y2, Y3 with Y0(t) = e0, Y1(t) = e1 for all t. In this case the equations
for the middle two particles are

y′′1 = T (y2 − y1)− T (y1 − y0)

y′′2 = T (y3 − y2)− T (y2 − y1)
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with y0 = y3 = 0. In the linear case (T (y) = ky) we obtain

y′′1 = −2ky1 + ky2

y′′2 = ky1 − 2ky2.

i.e.

(y1 + y2)′′ = −k(y1 + y2)

(y1 − y2)′′ = −3k(y1 − y2).

The normal mode solutions are

(1) y1 + y2 = A cos
√

kt + B sin
√

kt, y1 − y2 = 0

(2) y1 − y2 = C cos
√

3kt + D sin
√

3kt, y1 + y2 = 0

and the general solution is a linear combination of the two; it can be described as simple
harmonic motion of frequency

√
k with a simple harmonic forcing term of frequency

√
3k

(or vice versa).

A comparison.

In both of the above examples, for any function T (assumed smooth on R2), we have a
system of the form

y′′1 = F1(y1, y2)

y′′2 = F2(y1, y2)

with ∂F1
∂y2

= ∂F2
∂y1

. Therefore we have a total energy function H, and this is a conserved
quantity. In both examples, when T (y) = ky, we have H = H1 + H2, and the energies
H1,H2 of the normal modes are also conserved quantities. But when T is nonlinear, there
is an important difference. In the first example, H1 is a conserved quantity, hence H −H1

is also a conserved quantity (but not H2). In the second example, neither H1 nor H2 is a
conserved quantity, in general; the existence of other conserved quantities (besides H) is
not clear.

Examples of systems of N particles.

Let us return to the situation of a large number of particles. We shall generalize the
second example above by considering N + 2 particles, with the end particles fixed:

y′′1 = T (y2 − y1)− T (y1)

y′′2 = T (y3 − y2)− T (y2 − y1)
. . .

y′′N−1 = T (yN − yN−1)− T (yN−1 − yN−2)

y′′N = T (−yN )− T (yN − yN−1)
11



Let us assume that the initial velocities are all zero, and that the initial positions are given
by the “shape function” s : {1, . . . , N} → R, s(i) = yi(0) = ai.

We shall consider the following four forces:

(I) T (y) = y (linear case)

(II) T (y) = y + 0.3y2 (Fermi-Pasta-Ulam)

(III) T (y) = y + 100y3 + 5y4 + 5y5 (“arbitrary” nonlinear case)

(IV) T (y) = 1− e−y = y − 1
2y2 + 1

6y3 − . . . (Toda)

[3DXM:ODE:Lattice Models:USER,FERMI-PASTA-ULAM,USER,TODA ...

When N is large, computer simulations of the motion of the lattice are not very reveal-
ing. All four examples seem to exhibit similar behaviour. It is more useful to plot the
positions of the particles on a vertical axis, using the horizontal axis to list the particles.

... ACTION:SET LATTICE PARAMETERS:TRANSVERSE DISPLAY ...

The initial positions of the particles are indicated by the graph of the shape function s in
this case. Defining s(0) = s(N + 1) = 0 corresponds to fixing the ends of the lattice.

... ACTION:SET LATTICE PARAMETERS:INITIAL SHAPE,ZERO BOUNDARY CON-
DITION]

The energies H1, . . . ,HN of the normal modes can be indicated in a similar way. In
case (1) they remain constant of course (the values being determined by the initial condi-
tions). In cases (2)-(4) they do not remain constant. But there is a significant diffference
between case (3) and cases (2),(4): in the latter two cases, the normal modes appear to
be approximately periodic. This is the phenomenon that Fermi, Pasta and Ulam found
surprising.

Before we try to analyse these different kinds of nonlinear behaviour, let us briefly
dispose of the linear case, (1). Only the messiness of the explicit solutions distinguishes
this from the case N = 2 — the system behaves like N simple harmonic oscillators, which
are uncoupled by the normal coordinates. First, the matrix form Y ′′ = AY of the system
is


y1

y2

y3

. . .
yN


′′

=


−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · −2




y1

y2

y3

· · ·
yN
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An orthogonal matrix P−1 whose columns are eigenvectors of A is

√
2

N+1


sin p sin 2p sin 3p · · · sinNp
sin 2p sin 4p sin 6p · · · sin 2Np
sin 3p sin 6p sin 9p · · · sin 3Np
· · · · · · · · · · · · · · ·

sinNp sin 2Np sin 3Np · · · sinN2p


where p = π/(N + 1). Note that P t = P , so we have P = P−1 = P t. The change of
variables Z = PY is

zi =
√

2
N+1

N∑
j=1

yj sin pji

The eigenvalues are

λl = 4 sin2 lp

2
= 2 cos lp− 2 = 2 cos

lπ

N + 1
− 2, l = 1, . . . , N.

Motion in the l-th normal mode is represented by the following solution:

zl = Al cos(2t sin
lp

2
) + Bl sin(2t sin

lp

2
), zi = 0 if i 6= l.

Since we assume z′l(0) = 0, we have Bl = 0. Hence

yi =
√

2
N+1

N∑
j=1

zj sin pji

=
√

2
N+1 Al cos(2t sin

lp

2
) sin lpi

= ai cos(2t sin
lp

2
)

(using the initial condition yi(0) = ai). Thus, “motion in the l-th normal mode” means
that the i-th particle moves with simple harmonic motion of frequency 2 sin lp

2 and ampli-
tude ai.

Remark: It is tempting to regard the function y(i, t) = yi(t) as a “wave” which satisfies
the “wave equation” ∂2y/∂t2 = ∂2y/∂i2, where ∂2y/∂i2 is interpreted as (yi+1 − yi) −
(yi − yi−1). It is then natural to use “separation of variables” by trying a solution like
yi = sinαi cos βt. Substituting in the equation, we obtain β2 = 4 sin2 α

2 . Hence yi =
sinαi cos(2t sinα) is a solution for any α.
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§3 The Toda lattice

After the linear case (I), the example which has been most thoroughly investigated is
case (IV), the Toda lattice. It was introduced by M. Toda around 1967 (see [To1], [To2]),
using a force of the form T (y) = α(eβy − 1).

N particles, free ends.

Newton’s equations become

y′′1 = αeβ(y2−y1) − α

y′′i = αeβ(yi+1−yi) − αeβ(yi−yi−1), 2 ≤ i ≤ N − 1

y′′N = −αeβ(yN−yN−1) + α

Several remarks are appropriate at this point.

(i) The same equations hold with Yi instead of yi.

(ii) Deleting the terms −α, α in the equations for y1, yN corresponds to adding a constant
“outwards” force of magnitude −α to the first and last particles.

(iii) Replacing yi by λyi + iµ has the effect of replacing α by eµα/λ and β by λβ. We can
rescale α and β by arbitrary positive numbers or by arbitrary negative numbers this way.

By taking α = β = −2, deleting the constant terms, and replacing y1, . . . , yN by
q1, . . . , qn, we obtain the following modification (which will be extremely convenient for our
calculations). This is usually called “the open Toda lattice” or “the open Toda molecule”.

q′′1 = −2e2(q1−q2)

q′′i = −2e2(qi−qi+1) + 2e2(qi−1−qi) i = 2, . . . , n− 1

q′′n = 2e2(qn−1−qn).

In view of the above remarks, we have made only one serious change: we have introduced
an additional (constant) force which will cause the whole lattice to expand. From the
differential equation point of view, we are considering an inhomogeneous system instead
of a homogeneous one.

The case n = 2 is easy to solve “by hand”. We have (q1+q2)′′ = 0 so q1+q2 = At+B (as
in §2). It is natural to choose A = B = 0; this corresponds to fixing the centre of mass of
the spring at the origin. So we can put q = q1 = −q2 and we have to solve q′′ = −2e4q. Let
us impose the initial conditions q(0) = a, q′(0) = 0. The quantity q′

2 +e4q is conserved, so
we can put q′

2 + e4q = C and integrate to obtain (eventually) q(t) = a− 1
2 log cosh(2te2a).

The case n = 3, however, seems much more difficult. What we need are more conserved
quantities. But where can we find them?
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In 1973 H. Flaschka made the following remarkable observation. Let us define n × n
matrices L, M by

L =



p1 Q1 0 . . . 0 0
Q1 p2 Q2 . . . 0 0
0 Q2 p3 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn−1 Qn−1

0 0 0 . . . Qn−1 pn


and

M =



0 Q1 0 . . . 0 0
−Q1 0 Q2 . . . 0 0

0 −Q2 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 Qn−1

0 0 0 . . . −Qn−1 0


where pi = q′i and Qi = eqi−qi+1 .

Proposition. The open Toda lattice is equivalent to the matrix equation L′ = [L,M ].

The proof is a straightforward calculation.

Equations of this type are called Lax equations. The Lax equation immediately gives
n conserved quantities:

Corollary. Each eigenvalue of (the symmetric matrix) L is a conserved quantity for the
open Toda lattice.

Proof. It follows from the Lax equation that (trace Lk)′ = 0 for any k. �

Let us compute the conserved quantities for the case n = 3. Writing

L =

 p1 Q1 0
Q1 p2 Q2

0 Q2 p3

 =

 s1 t1 0
t1 s2 t2
0 t2 s3

 ,

and computing the characteristic polynomial det(L−λI), we obtain the following conserved
quantities (these are, up to sign, the symmetric functions of the eigenvalues):

s1 + s2 + s3

s1s2 + s2s3 + s3s1 − t21 − t22

s1s2s3 − s1t
2
2 − s3t

2
1

15



Of course the first one is trivial — it is identically zero if we use the normalization q1 +
q2 +q3 = 0 as in the case n = 2. The second one is essentially the same as the total energy.
The third one is new.

Having two independent conserved quantities allows us to solve the system (for the
independent variables q1, q2, say), just as we used one conserved quantity to solve the
system for q1 in the case n = 2. The calculations are messy but the answer is explicit. Let
the initial conditions be

V = L(0) =

 0 v1 0
v1 0 v2

0 v2 0

 .

Then

q1(t) = q1(0) +
1
2

log
α(t)
β(t)

q2(t) = q2(0) +
1
2

log
β(t)
γ(t)

q3(t) = q3(0) +
1
2

log
γ(t)
α(t)

where

α(t) = v2
1 + v2

2

β(t) = v2
1 cosh 2t

√
v2
1+v2

2 + v2
2

γ(t) = v2
1 + v2

2 cosh 2t
√

v2
1+v2

2

and

q1(0) =
2
3

log v1 +
1
3

log v2, q2(0) = −1
3

log v1 +
1
3

log v2, q3(0) = −1
3

log v1 −
2
3

log v2.

You may feel suspicious: surely the Lax equation L̇ = [L,M ] came first, then the
Toda lattice? But this is not correct. Toda invented the Toda lattice by contemplating
addition formulae for elliptic functions. Computer simulations by J. Ford, D. Stoddard,
and J. Turner ([FST]) suggested that the Toda lattice with n = 3 and n = 6 might have
additional conserved quantities. Then M. Hénon found the conserved quantities for the
general case ([He]). Only after this did H. Flaschka find the Lax equation.

The only deceitfulness in the above account of the case n = 3 is that there is a much
easier way of finding the explicit solution than using the conserved quantities.

Proposition. The solution of the open Toda lattice L′ = [L,M ] with L(0) = V is given
by the following explicit formula:

L(t) = (exp tV )−1
1 V (exp tV )1.
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The notation X1, for an n × n real invertible matrix X, denotes the matrix which is
obtained by orthogonalizing the columns of X, by the Gram-Schmidt procedure, starting
from the last column.

Incidentally, this formula gives another proof of the fact that the eigenvalues of L are
independent of t, because

det(L(t)− λI) = det((exp tV )−1
1 V (exp tV )1 − λI) = det(V − λI).

For the (easy!) proof of the proposition, and further explanation and references, see [Gu].

Finally we shall mention several other kinds of Toda lattice. (We shall sheepishly
ignore the original version without the artificial expansion forces.) All of them possess
“many conserved quantities” and can be solved explicitly, but the formulae are much
more complicated than for the open Toda lattice.

N + 2 particles, both ends fixed.

This is:

q′′1 = −2e2(q1−q2) + 2e−2q1

q′′i = −2e2(qi−qi+1) + 2e2(qi−1−qi) i = 2, . . . , n− 1

q′′n = −2e2qn + 2e2(qn−1−qn).

We shall not investigate it any further, as it is a special case of the next version.

N + 1 particles, periodic.

This is:
q′′i = −2e2(qi−qi+1) + 2e2(qi−1−qi) i ∈ Z mod n

(the previous case is given by imposing the condition qin = 0 for all i).

For n = 2 we obtain q′′ = −2e4q +2e−4q. The total energy 1
2q′

2 +cosh 4q is a conserved
quantity, and the equation can be integrated in terms of elliptic functions.

For any n there are n − 1 independent nontrivial conserved quantities, and they arise
from a Lax equation L′ = [L,M ] as in the case of the open Toda lattice. For the periodic
Toda lattice we have to take

L =



p1 Q1 0 . . . 0 Qn

Q1 p2 Q2 . . . 0 0
0 Q2 p3 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn−1 Qn−1

Qn 0 0 . . . Qn−1 pn
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and

M =



0 Q1 0 . . . 0 −Qn

−Q1 0 Q2 . . . 0 0
0 −Q2 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 Qn−1

Qn 0 0 . . . −Qn−1 0

 .

As in the case of the open Toda lattice, the conserved quantities can be used to solve the
periodic Toda lattice explicitly. This is done in [To1], but as Toda himself says (Chapter
25):

“The method is very difficult to understand, and so complicated that lectures on this
problem are usually not so well accepted (I feel that some simpler method will be found
in the future). Readers are requested to read through the following chapters dealing with
cyclic lattices without gettting stuck on minor points.”

In fact, more conceptual methods were found later, analogous to the formula L(t) =
(exp tV )−1

1 V (exp tV )1 above (but they are hardly “simpler”, as they involve infinite di-
mensional Lie algebras).

Infinitely many particles.

The infinite Toda lattice is:

q′′i = −2e2(qi−qi+1) + 2e2(qi−1−qi) i ∈ Z

(the periodic case is given by imposing the condition qi = qi+n for all i).

We shall discuss this case separately, later on.

§4 Some explanations

The kind of examples and phenomena that we have seen in §1-§3 have led, directly or
indirectly, to important advances in mathematics. We shall mention three of these topics
and illustrate them using our examples.

Completely integrable Hamiltonian systems.

As explained in [Pa], Newton’s equations (using coordinates q1, . . . , qn for the config-
uration space C) can be expressed using coordinates q1, . . . , qn, p1, . . . , pn for the tangent
space TC. The resulting equations are called Hamilton’s equations.
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Let H be the total energy function. Regarded as a function from TC to R, it is called
the Hamiltonian function. Then the condition that a function F : TC → R is a conserved
quantity — namely d

dtF (q1, . . . , qn, p1, . . . , pn) = 0 for any solution (q1(t), . . . , qn(t)) —
can be expressed as {H,F} = 0.

The Arnold-Liouville theorem says that if

(1) F1, . . . , Fn are (functionally independent) conserved quantities, and

(2) {Fi, Fj} = 0 for all i, j,

then there exist new “action-angle” variables q̂1, . . . , q̂n, p̂1, . . . , p̂n such that Hamilton’s
equations are

(q̂i)′ = constant, (p̂i)′ = 0.

The solution of this system is that each q̂i(t) must be a linear function of t. So, if we
can find the new coordinates explicitly, we can find the solution to the original system
explicitly.

In principle, by making use of the conserved quantities, the new coordinates can be
found explicitly “by quadrature” (although in practice the calculations might be compli-
cated). We have already seen several examples of this procedure. The simplest example
is

y′′ = −ky.

Here n = 1 and y is a coordinate for the configuration space. Let us take y1 = y and “y2 =
y′” as coordinates for the tangent space. The total energy function is H = 1

2y′
2 + 1

2ky2,
and the Hamiltonian function is H = 1

2y2
2 + 1

2ky2
1 . Hamilton’s equations

y′1 =
∂H

∂y2
, y′2 = −∂H

∂y1

are the familiar first order system(
y1

y2

)′

=
(

0 1
−k 0

) (
y1

y2

)
.

We already know how to solve this system, but let us see what lies behind the Arnold-
Liouville theorem in this case. Observing that the Hamiltonian function can be written

H = ( 1√
2
y2)2 + (

√
k√
2
y1)2,

let us introduce

r =
√

( 1√
2
y2)2 + (

√
k√
2
y1)2, θ = tan−1

√
k√
2
y1

1√
2
y2

.
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Then (a calculation shows that) Hamilton’s equations take the expected form

θ′ = constant, r′ = 0

This simple example illustrates the reason why n conserved quantities (rather than 2n)
are sufficient, and (more or less) why the new variables are called action-angle variables.

Another aspect of the Arnold-Liouville theorem — and one which is easier to visualize
— is the fact that, if the Hamiltonian function is a proper function (hence H−1(c) is
compact, for any c), the solution to the system must lie on a torus in TC. The n conserved
quantities describe an n-dimensional torus in TC and the n “angles” are local coordinates
on this torus. There are two possible kinds of solution: either periodic (a circle) or almost
periodic (a “line of irrational slope” on a torus of dimension at least two).

[3DXM:ODE:ODE(2D)-2nd Order:USER]

This explains very clearly the behaviour of a linear system Y ′′ = AY where A is a
symmetric n× n matrix. There are n conserved quantities (the energies Hi of the normal
modes) and it is easy to verify that {Hi,Hj} = 0. The solution is given by linear motion
on an n-dimensional torus in Rn ×Rn. Using the normal mode coordinates Z = PY we
can introduce action-angle coordinates as in the simple example above.

PROBLEM: What can we say about Y ′′ = AY when A is not symmetric?

Now let us look at our lattice models in the light of the Arnold-Liouville theorem.

(I) T (y) = y (linear case)

(II) T (y) = y + 0.3y2 (Fermi-Pasta-Ulam)

(III) T (y) = y + 100y3 + 5y4 + 5y5 (“arbitrary” nonlinear case)

(IV) T (y) = 1− e−y = y − 1
2y2 + 1

6y3 − . . . (Toda)

The linear case is covered by the remarks above.

The Toda lattice (at least, for suitable boundary conditions) turns out to be an example
of a completely integrable Hamiltonian system, i.e. a system to which the Arnold-Liouville
theorem applies. (We found the “maximum” number of conserved quantities in §3. For
the proof of {Fi, Fj} = 0, and for more information, see [Gu].) This explains the almost
periodic behaviour of the energies of the normal modes of the Toda lattice, because the
energies of the normal modes are defined in terms of the solutions, and the solutions are
almost periodic.

Regarding cases (II) and (III), we have not yet seen any conserved quantities beyond
the total energy, but we have seen that the two systems behave very differently. The
Fermi-Pasta-Ulam lattice appears almost periodic, while the “arbitrary” lattice appears to
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thermalize. Therefore it is reasonable to conjecture that case (II) is completely integrable
and case (III) is ergodic. (As explained in [Pa], ergodic systems are in some sense the
opposite extreme to completely integrable Hamiltonian systems. In particular, they possess
exactly the “minimum” number of conserved quantities, namely one.)

Since case (III) is an artificial example, we shall abandon it at this point. From now
on we shall look for further evidence concerning the behaviour of the Fermi-Pasta-Ulam
lattice.

Is it an integrable system or not?

The Kolmogorov-Arnold-Moser theory.

The KAM theory (see [Pa], [We]) predicts that it is possible for a nonlinear system to
behave like an integrable system if it is sufficiently close to an integrable system. This
“obvious” statement was very surprising when it was discovered, because the slightest
(nonlinear) perturbation of an integrable system had been expected to be ergodic.

This means that we have two rather different posssible explanations for the behaviour
of the Fermi-Pasta-Ulam lattice:

— it might be completely integrable, or

— it might be sufficiently close (in the sense of KAM) to a completely integrable system.

In fact, there is a very good candidate for the second explanation: the Toda lattice.
To explain this, let us return to the general equations of the Toda lattice with force
T (y) = α(eβy − 1).

Writing k = αβ, we have

T (y) = αβy +
1
2!

αβ2y2 +
1
3!

αβ3y3 + . . .

= ky +
1
2!

kβy2 +
1
3!

kβ2y3 + . . .

so we must take k > 0 in order to have Hooke’s law near y = 0. Let us choose k = 1 for
simplicity. Then the quadratic approximation is

T (y) ≈ y +
1
2
βy2

and we have two essentially distinct cases:

(a) α, β < 0. For β = −0.6 we obtain T (y) ≈ y − 0.3y2,

(b) α, β > 0. For β = 0.6 we obtain T (y) ≈ y + 0.3y2, i.e. the Fermi-Pasta-Ulam case.
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The physical interpretation of these two cases can be expressed as follows. For a small
expansion of the spring (y > 0), the restoring force (T ) is greater in case (b); for a small
compression of the spring (y < 0), the repulsive force (i.e. the magnitude of −T ) is greater
in case (a). It is also possible to express this by comparing the potential energy functions.
We consider the system consisting of the lattice points Yi and Yi+1 and the spring between
them, and we write y = yi − yi−1. Then we define a potential function U by

y′′ = −U ′(y)

In other words, since y′′ = −2T (y) here, we have T (y) = 1
2U ′(y). Hence

1
2
U(y) ≈ constant +

1
2
y2 +

1
6
βy3

The difference between (a) and (b) corresponds to the asymmetry in the potential function
near the stable equilibrium point y = 0.

The Fermi-Pasta-Ulam lattice is, therefore, approximated up to second order by the
Toda lattice with α = k/0.6, β = 0.6. This would be consistent with the KAM theory
and the (apparent) almost periodicty of the energies of the normal modes. In this sense,
we have “explained” the Fermi-Pasta-Ulam experimental observations, but there remains
the question of whether the system is completely integrable.

Soliton theory.

A different kind of explanation of the Fermi-Pasta-Ulam observations comes from soli-
ton theory. Solitons are exceptionally stable solutions of the KdV equation (a nonlinear
generalization of the wave equation). It can be shown that the Fermi-Pasta-Ulam lattice is
a discrete approximation to the KdV equation, or, more precisely, that the KdV equation
can be obtained as a certain “continuum limit” of the Fermi-Pasta-Ulam system. Hence,
the latter might posess its own soliton solutions, and these might have been the solutions
observed by Fermi, Pasta and Ulam.

In [Pa] a simpler case of this phenomenon was described: the wave equation utt = c2uxx

can be obtained as a “continuum limit” of the linear lattice equations. We have already
noticed (at the end of §2) that the linear lattice admits wave-like solutions; in fact our
entire analysis of the linear lattice resembled a discrete version of the method of Fourier
series.

It is very natural, therefore, to look for “soliton solutions” of nonlinear lattice systems,
such as those of Fermi-Pasta-Ulam and Toda. The Toda lattice does in fact admit soliton
solutions (seee [To1], in the sense that these solutions are given by explicit formulae and
have analogous properties to soliton solutions of the KdV equation. On the other hand,
it is not clear how to find soliton solutions of the Fermi-Pasta-Ulam lattice, since we have
no explicit formulae.
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M. Kruskal and N. Zabusky ([Kr-Za]) were the first to demonstrate the relation between
the Fermi-Pasta-Ulam lattice and the KdV equation, and they performed a numerical
experiment with the KdV equation which exhibited the same almost-periodic behaviour,
quantitively as well as qualitatively. This provided further strong evidence for the “special”
nature of the Fermi-Pasta-Ulam lattice. It also led to the vigorous development of soliton
theory which continues to this day.

§5 The Hénon-Heiles system

As a model for the motion of a star in a certain kind of galaxy, M. Hénon and C. Heiles
([He-He]) considered the following Hamiltonian function:

H(q1, q2) =
1
2
(p2

1 + p2
2) +

1
2
(q2

1 + q2
2) + q2

1q2 −
1
3
q3
2 .

Thus, Hamilton’s equations or Newton’s equations are equivalent to the following system:

q′′1 = −∂H

∂q1
= −q1 − 2q1q2

q′′2 = −∂H

∂q2
= −q2 − q2

1 + q2
2

By construction, H is a conserved quantity. Hénon and Heiles asked themselves the
question: is this system completely integrable? Or, at least, is there a second conserved
quantity?

They performed computer experiments to observe the solutions for various initial con-
ditions with the same value of H. If the system is completely integrable, then (by the
Arnold-Liouville theorem) the solution (q1(t), q2(t), q′1(t), q

′
2(t)) is a “linear flow” on a

two-dimensional torus in R4. If there is a second conserved quantity F , then (even if
{H,F} is not zero) the solution should lie on a two-dimensional surface of the form
H−1(constant) ∩ F−1(constant) in R4. If H is the only conserved quantity, then the
solution is likely to be ergodic, wandering over a three-dimensional subset H−1(constant).

Instead of looking at a projection of the solution on R2 or R3, they examined the
intersection of the solution with a suitable R2. To be precise, they chose the (q2, p2)-plane
in R4 and computed the intersection points of the solution with this plane. (This idea is
due to Poincaré.)

PROJECT 3: Write a program to carrry out the Hénon-Heiles experiment. Use the
program to investigate other systems (linear and nonlinear). �
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The results of the experiment with low values of H suggested motion on a two-dimensional
surface. However, for higher values of H, the intersection points seemed to appear ran-
domly, suggested ergodic motion on a three-dimensional subspace of R4. This “proves”
that a second conserved quantity cannnot exist, because the second conserved quantity
would constrain the motion to a two-dimensional surface for any value of H.

PROBLEM: Is it possible to convert this “computer proof” into a mathematical proof?

A physical explanation of these results can be obtained from the properties of the
potential energy

U(q1, q2) =
1
2
(q2

1 + q2
2) + q2

1q2 −
1
3
q3
2 .

The point (0, 0) is a stable equilibrium point, and for small values of the total energy the
solution must remain near to (0, 0), with (approximately) simple harmonic motion. This
gives an impression of complete integrability in the computer experiments. But for higher
total energy, the solution can “escape” from the region around (0, 0).

[3DXM:SURFACE:USER]

This phenomenon can also be observed by plotting the solution curve (q1(t), q2(t)) in
the usual way, i.e. by projecting onto the (q1, q2)-plane.

[3DXM:ODE:ODE(2D)-1st Order:USER]

However, the advantage of the Poincaré method is that it is can be used to observe how
the ergodic behaviour begins — how order turns into chaos. For more information on this,
see [To1] and [We].

Our main reason for mentioning the Hénon-Heiles system is that it is related to the
Toda and Fermi-Pasta-Ulam lattices in the case of three particles with periodic boundary
conditions. We shall explain this briefly, following [To1].

Let us begin with the Toda system, using the general force T (y) = α(eβy − 1). It is
easy to verify that the total energy function is

H =
1
2
(y′1

2 + y′2
2 + y′3

2) +
α

β
(eβ(y3−y2) + eβ(y2−y1) + eβ(y1−y3)).

The “linearized system” is

y′′1 = k(y2 − 2y1 + y3)

y′′2 = k(y3 − 2y2 + y1)

y′′3 = k(y1 − 2y3 + y2)

where k = αβ as usual. This corresponds to the total energy function

H =
1
2
(y′1

2 + y′2
2 + y′3

2) +
1
2
k((y3 − y2)2 + (y2 − y1)2 + (y1 − y3)2)
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(we have omitted the constant term 3α/β as it has no effect on the system.) The eigen-
values of the coeficient matrix are −3k,−3k, 0.

Let us take k = 1 for simplicity. Then suitable coordinates z1, z2, z3 for the normal
modes are given by  z1

z2

z3

 =

 1/
√

6 −
√

2/
√

3 1/
√

6
1/
√

2 0 −1/
√

2
1/
√

3 1/
√

3 1/
√

3

  y1

y2

y3


and we obtain

H =
1
2
(z′1

2 + z′2
2 + z′3

2) +
3
2
(z2

1 + z2
2)

The coordinate z3 = (y1+y2+y3)/
√

3 does not appear — it is an ignorable coordinate (see
[Pa]) so z3 and z3

′ must be constant. (We have already made this observation directly, in
§2.) Therefore we can omit the term z′3 too, and conclude that the total energy function

1
2
(z′1

2 + z′2
2) +

3
2
(z2

1 + z2
2)

governs the first order approximation of the Toda system.

Next, the cubic term

1
6

α

β
β3((y3 − y2)3 + (y2 − y1)3 + (y1 − y3)3)

is equal to
3β

2
√

2
(z2

1z2 −
1
3
z3
2),

so we can say that the total energy function

1
2
(z′1

2 + z′2
2) +

3
2
(z2

1 + z2
2) +

3β

2
√

2
(z2

1z2 −
1
3
z3
2)

governs the second order approximation of the Toda system. If we put β = 2
√

2 (and
rescale the time variable) this gives exactly the Hénon-Heiles system.

To quote Toda ([To1], page 256)

“That the H-H system turned out to be equivalent to the [Toda] lattice was entirely
accidental; a very strange happening indeed.”

Since we already know that the second order approximation of the Toda system gives
the Fermi-Pasta-Ulam system, the computer observations of Hénon and Heiles “prove”
that the Fermi-Pasta-Ulam system is not completely integrable !
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§6 Geometry

We have seen (in §3) the explicit solution of the Toda system

q′′1 = −2e2(q1−q2)

q′′i = −2e2(qi−qi+1) + 2e2(qi−1−qi) i = 2, . . . , n− 1

q′′n = 2e2(qn−1−qn).

It is complicated (and the solutions to the other versions of the Toda lattice are even
worse). On the other hand, the Arnold-Liouville theorem tells us that there is a simple
geometrical picture of the solution, namely a linear flow on an (n−1)-dimensional torus in
R2n−2. (This is not quite correct for the above system, because the conserved quantities
are not proper functions, and so we have a flow on an affine space instead of a torus.) But
the Arnold-Liouville theorem is virtually useless for computations.

It is natural to ask whether there are other geometrical descriptions of the solutions,
more concrete than the Arnold-Liouville picture but less intimidating than a formula for
the functions qi. We shall discuss one such description, due to J. Moser ([Mo]). It uses
the theory of homogeneous spaces (real projective spaces, in the case of the system above)
and it leads to very interesting new questions.

Recall that the system can be formulated as a Lax equation L′ = [L, M ] with initial
condition L(0) = V , and that the solution is given by

L(t) = (exp tV )−1
1 V (exp tV )1

where X1 means the matrix obtained by orthogonalizing the columns of X, by the Gram-
Schmidt procedure, starting from the last column. As we remarked in §3, this formula
shows immediately that the eigenvalues λ1, . . . , λn of L(t) are constant. On the other hand,
the eigenvectors of L(t) are not constant, and it is interesting to consider their behaviour.

The eigenvalues are determined by the initial condition: since V is a symmetric matrix
there exists an orthogonal matrix P such that

PV P−1 =

 λ1

. . .
λn

 = Λ (say)

This means that the columns of P−1 (the rows of P ) are eigenvectors of V .

Let us write u = (exp tV )1 so that

L = u−1V u = (Pu)−1Λ(Pu).
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It follows that the columns of (Pu)−1 (the rows of Pu) are eigenvectors of L, i.e. our
object of study.

We have

Pu = P (exp tV )1
= (P exp tV )1
= (P (exp tV )P−1P )1
= ((exp tPV P−1)P )1
= ((exp tΛ)P )1.

Now, it is possible to show by explicit calculation that L is determined by the last column of
Pu. But the last column of ((exp tΛ)P )1 is easy to calculate; it is simply the normalization
of the last column of (exp tΛ)P . Let us write

P =

 r1

rn


so that

(exp tΛ)P =

 eλ1tr1
...

eλntrn

 .

Then the last column of ((exp tΛ)P )1 is
eλ1tr1/

√∑
i e2λitr2

i

...

eλntrn/
√∑

i e2λitr2
i


To avoid the inconvenient normalization we can work in the real projective space RPn−1

instead of Rn. With the usual homogeneous coordinates for RPn−1, we obtain the formula

[eλ1tr1; . . . ; eλntrn]

for the solution of the Toda lattice.

What does this formula mean? Essentially we have made a coordinate change, from the
original qi, pi to λi, ri. This is another manifestation of the Arnold-Liouville action-angle
coordinates — the “linearity” of the solution is apparent — but it is more concrete. Even
better, we may be able to use the geometry of the space RPn−1 to study the behaviour
of the solutions of the Toda system.
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Indeed, Moser used the “Schubert decomposition” of RPn−1 to study the “scattering
theory” of the system. Physically, the phenomenon of scattering arises because of the
constant expansion of the lattice (see §3). As t → ∞ or t → −∞ the solutions are
asymptotically linear, and their derivatives (the velocities of the particles in the lattice)
are asymptotically constant. We can regard the system as a device which relates the
velocities at ∞ to the velocities at −∞.

PROJECT 4: Write a program to estimate the “velocities at ∞” and the “velocities at
−∞” for the above version of the Toda lattice. What do you observe? Can you explain
this (in the three particle case) by looking at the explicit solutions in §3? Can you explain
it by looking at the solution in RPn−1 ? �

The concept of scattering plays an important role in many other integrable systems with
noncompact phase space, and in some cases provides a method of solving the system. The
geometrical method can also be useful in the study of integrable systems with compact
phase space — it provides a more concrete version of the Arnold-Liouville theorem.

§7 Some conclusions

The Fermi-Pasta-Ulam lattice was one of the first mathematical research problems to
be attacked by computer, almost 50 years ago. The surprising results of that experiment
led to tremendous progress in the theory of differential equations. The experiment could
not have been done without using a computer, and many of the new concepts arising from
such experiments (integrable systems, solitons, ergodicity and chaos) can be visualized
much more satisfactorily with the aid of computers. It seems clear that computers will
greatly expand the frontiers of mathematics in the next 50 years. But the road will not
be easy: computer experiments have to be carefully formulated, continually checked for
accuracy, and correctly interpreted.

We have discussed the Fermi-Pasta-Ulam lattice as one of our main examples, and
we have — by a combination of mathematical arguments and computer experiments —
reached some important conclusions:

— it is a second-order approximation to a completely integrable system (the Toda
lattice)

— it exhibits almost periodic motion for “low” total energy (this is merely an experi-
mental observation, but it is consistent with KAM theory and soliton theory)

— it is (almost certainly!) not completely integrable.
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On the other hand, our attempts to reach these conclusions suggest further questions. For
example, the behaviour of the energies of the normal modes deserves a much more detailed
description than simply “almost periodic”.

PROBLEM: At the beginning of this course we asked three very general questions about
differential equations. Have these lectures provided any answers?

What kinds of differential equations are there?

???

How can geometry (differential geometry, manifold theory) be used to study
and solve differential equations?

???

Is there a way to recognise or visualize the “integrability” of differential
equations?

???
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