
THE FERMI-PASTA-ULAM LATTICE

Background

The Fermi-Pasta-Ulam lattice is named after the
experiments performed by Enrico Fermi, John Pasta,
and Stanislaw Ulam in 1954-5 on the Los Alamos
MANIAC computer, one of the first electronic com-
puters. As reported in Ulam’s autobiography [Uh],
Fermi immediately suggested using the new machine
for theoretical work, and it was decided to start by
studying the vibrations of a string under the influ-
ence of nonlinear internal forces. Nonlinearity makes
the computations very difficult and the problem could
not be attacked by standard mathematical methods.
However, physical intuition suggested that the mo-
tion of such a string would eventually “thermalize”.
The purpose of the experiment was to investigate the
rate of thermalization.

For the computer calculations, the string was ap-
proximated by a finite sequence of point particles
with nearest-neighbour interactions — a lattice model.
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As explained in the ATC for the Lattice Models cat-
egory, the motion of the lattice is governed by a sys-
tem of ordinary differential equations, and it is these
equations that the computer solves, numerically.

The results more than justified the trouble of care-
fully formulating the experiment and programming
it on a very primitive machine, for they went com-
pletely against all expectations. In fact the motion
did not seem to to thermalize at all. The previously
accepted beliefs thus had to be re-examined, and this
re-examination led eventually to the discovery of soli-
ton theory, one of the main themes of 20th century
mathematics.
How to view the demonstration

The Fermi-Pasta-Ulam string is the black curve.
Although it appears continuous, it is in fact made
up of the motion of individual points (the blue curve
represents the velocities of these points). The number
of points (i.e. the number of particles in the lattice)
can be changed by choosing Lattice Parameters in the
Action menu, and various other adjustments are pos-
sible, as explained in the Lattice Models ATC. Fermi-
Pasta-Ulam actually used a lattice with (at most) 64
particles.
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The energies of the normal modes (see the Lat-
tice Models ATC) are the red/green bars in the left
hand corner. Thermalization means, roughly speak-
ing, that the heights of the red/green bars equalize
after a sufficiently long period of time. More pre-
cisely, it is the time averages of their heights which
equalize, and these are represented by the blue bars.

The fact that this does not happen is the surprising
feature of the Fermi-Pasta-Ulam experiment. What
happens, and what Fermi-Pasta-Ulam observed, is
first of all that only the first few normal modes are
excited, and in addition that the motion is almost pe-
riodic. This can be detected by watching the motion
of the red/green bars; after some time they return
(apparently) to the original configuration.

Various initial shapes can be chosen from the Lat-
tice Parameters menu, but the almost periodicity seems
to occur regardless of the initial shape of the string
(or the initial configuration of the red/green bars).
Further aspects

To put this observation into context, it is neces-
sary to consider the effects of different internal forces
in the string. As explained in the Lattice Models
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ATC the internal force is specified by a function T (y).
By choosing the User Lattice Model from the Lattice
Models menu, the function T (y) can be specified (as
well as the usual Lattice Parameters). To switch on
the energies of the normal modes, select Show Normal
Mode Display from the Action menu.

For example, T (y) = ky (where k is a positive
number) gives the motion of a “standard” string,
which is exactly periodic. The red/green bars behave
even more simply — they remain constant.

The Fermi-Pasta-Ulam case is T (y) = y+αy2; the
default value of α in 3D-XplorMath is 0.3. (Fermi-
Pasta-Ulam also considered y + αy3 and a piecewise
linear function, with similar results.) The effect of the
small nonlinear term αy2 is to “disturb” the periodic
behaviour of the linear case, and the red/green bars
no longer remain constant. But, as we have observed,
some vestiges of periodicity remain.

This is surprising because a “randomly chosen”
nonlinear internal force T (y) generally leads to the
thermalization that Fermi-Pasta-Ulam expected. For
physical reasons, T (y) should be of the form ky+N(y)
where N(y) is a nonlinear term which remains small
during the motion. For example, T (y) = y + 100y3 +
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5y4 + 5y5.
Why is the Fermi-Pasta-Ulam lattice so special?

This question took some time to answer, because the
necessary mathematical tools were insufficiently de-
veloped at that time. In addition there were vari-
ous sources of distraction: the mathematical string
is only an idealized model of a “real” physical situ-
ation, the discrete lattice is in turn only a model of
that string, and furthermore any computer calcula-
tions are subject to numerical and rounding errors.
In fact the philosophical questions surrounding such
“simulation” experiments, and the subject of “exper-
imental mathematics” in general, are still being de-
bated (see [We]).

However, it is by now generally agreed that the
Fermi-Pasta-Ulam lattice is a genuine phenomenon
and that it can be explained by a combination of pow-
erful theories: the Kolmogorov-Arnold-Moser (KAM)
theory, the theory of completely integrable Hamilton-
ian systems, and soliton theory.

The KAM theory explains, very roughly speaking,
that a system which is close enough to a completely
integrable Hamiltonian system retains some of the
predictable behaviour of such a system. The Fermi-
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Pasta-Ulam lattice happens to be close to the Toda
lattice, which (some 20 years after the FPU experi-
ments) was discovered to be a completely integrable
Hamiltonian system. The Toda lattice is discussed
further in the ATO for the Toda lattice (select Toda
from the Lattice Models menu).

Soliton theory refers to the study of special so-
lutions (solitons) of certain nonlinear wave equations
such as the Korteweg-de Vries (KdV) equation. These
solutions have unexpectedly persistent behaviour (in
contrast to “randomly chosen” nonlinear waves, which
either disperse or break after a sufficiently long time).
It turns out that the differential equations of the FPU
lattice can be considered as a discrete approximation
to the KdV equation; hence it is plausible that the
FPU lattice admits soliton-like solutions as well.
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